Research Article
BibTex RIS Cite

Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi

Year 2024, , 156 - 165, 28.06.2024
https://doi.org/10.18182/tjf.1444895

Abstract

Bu çalışmanın temel amacı, Bursa Karacabey subasar ormanlarında, iki farklı ortamdaki (sulak ve karasal) doğal kızılağaç (Alnus glutinosa L.) Kzc3 (d1,3=20-35,9 cm) ve Kzd3 (d1,3=36,0-51,9 cm) meşcere gelişim çağlarında, ağaç bileşenlerinin (yaprak, dal, tohum ve diğer) yıllık döküm miktarı ve döküm ile ölü örtüye ulaşan karbon ve makro (N, P, K, Ca, Mg ve S) ve mikro (Fe, Mn, Na, Cu, Zn, Cl, Ni ve Co) besin elementi miktarını belirlemektir. Çalışma 2021, 2022 ve 2023 yıllarında yürütülmüştür. Bulgulara göre, yıllık ortalama döküm miktarı, sulak ortamdaki Kzc3 için hektarda 10407 kg, Kzd3 için 7678 kg iken, karasal ortamdaki Kzc3 ve Kzd3 için bu değerler daha düşük olup sırasıyla 8157 ve 5907 kg olarak tespit edilmiştir. Toplam döküntüye, yaprak miktarının katkı oranı, sulak ortamdaki Kzc3 ve Kzd3 meşcerelerinde sırasıyla %45 ve %47 iken, bu oranlar karasal ortamda %37 ve %41 olarak belirlenmiştir. Döküntü miktarı meşcere tipine göre farklılık göstermiş ve genel olarak meşcere yaşı ve ortalama çapı arttıkça döküntü miktarı azalmıştır. Sulak ortamda, döküntü ile ekosisteme giren yıllık ortalama karbon ve diğer makro ve mikro besin maddesi miktarları, genel olarak karasal ortamdan daha yüksek bulunmuştur. Örneğin, sulak ortamda Kzc3 için C, N, P, K, Ca, Mg ve S girdileri sırasıyla 4154; 130; 15; 48; 244; 48 ve 24 kg/ha/yıl olarak hesaplanırken, karasal ortamda bu değerler sırasıyla 3051; 104; 27; 49; 202; 38 ve 32 kg/ha/yıl olarak hesaplanmıştır. Çalışma ile kızılağaç meşcerelerinin döküntü üretimi ve besin maddesi girişinin sulak ve karasal ortam ile meşcere gelişim çağlarına göre farklılık gösterdiği ortaya konulmuştur.

Project Number

121O702

Thanks

Bu çalışma, TÜBİTAK 1001 projesi kapsamında (Proje No 121O702) desteklenmiştir.

References

  • Akay, A.E., Gencal, B., Taş, İ., 2017. Spatiotemporal change detection using landsat imagery: The case study of Karacabey flooded forest, Bursa, Turkey, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4th International GeoAdvances Workshop, 14-15 October, Safranbolu, Karabuk, Turkey, pp. 31-35.
  • Anderson, J.M., Ingram, J.S.I., 1993. Tropical Soil Biology and Fertlity: A Handbook for Methods (2nd edition). Wallingford, Oxfordshire: CAB International.
  • Aygün, D., 2021. Arazi kullanım değişikliğinin Bursa, Karacabey Longoz ormanlarının toprak organik karbon ve toplam azot stok oranlarına etkileri. Yüksek Lisans Tezi, Bursa Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Bursa.
  • Barlow, J., Gardner, T.A., Ferreira, L.V., Peres, C.A., 2007. Litterfall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. Forest Ecology and Management, 247: 91-97. https://doi.org/10.1016/j.foreco.2007.04.017
  • Barnes, B.V., Zak, D.R., Denton, S.R., Spurr, S.H., 1998. Forest Ecology. 4 th ed. John Wiley and Sons, New York.
  • Bray, J.R., Gorham, E., 1964. Litter production in forests of the world. Advances in Ecological Research, 2: 101-157.
  • Camargo, M., Giarrizzo, T., Jesus, A., 2015. Effect of seasonal flooding cycle on litterfall production in alluvialrainforest on the middle Xingu River (Amazon basin, Brazil). Brazilian Journal of Biology, 75: 250-256. doi: 10.1590/1519-6984.00514BM
  • Celentano, D., Zahawi, R.A., Finegan, B., Ostertag, R., Cole, R.J., Holl, K.D., 2011. Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica, 43: 279–287. https://doi.org/10.1111/j.1744-7429.2010.00688.x
  • Çakır, M., Akburak, S., 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University, 67(2): 178-193.http://dx.doi.org/10.17099/jffiu.301602
  • Çakır, M., Akburak, S., Sargıncı, M., 2019. Çankırı bölgesi karaçam (Pinus nigra Arnold.) meşcerelerinde ölü örtü ayrışması ile mikroeklembacaklılar ve mikrobiyal aktivitenin zamansal değişimi ve toprağa verilen besin maddeleri. TÜBİTAK Proje Sonuç Raporu, Proje Numarası, 215O572, Ankara.
  • Dawoe, E.K., Isaac, M.E., Quashie-Sam, J., 2010. Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant and Soil, 330: 55-64. https://doi.org/10.1007/s11104-009-0173-0
  • Demessie, A., Singh, B.R., Lal, R., Strand, L.T., 2012. Leaf litterfall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agriculture Scandinavica, Section B- Soil and Plant Science, 62: 467-476. https://doi.org/10.1080/09064710.2011.645497
  • Dimitrova, V., Damyanova, S., 2023. Chemical composition of litterfall in beech (Fagus sylvatica L.) forests. Wseas Transactions on Environment and Development, 19: 412-417. https://doi.org/10.37394/232015.2023.19.38
  • Dimitrova, V., Dimitrov, D., Malchev, D., 2023. Litterfall in beech forest (Fagus sylvatica L.). V. International Halich Congress on Multidisciplinary Scientific Research, 15-16 January, Istanbul, Türkiye, pp. 702-706.
  • Fennessy, M.S., Ibáñez, C., Calvo-Cubero, J., Sharpe, P., Rovira, A., Callaway, J., Caiola, N., 2019. Environmental controls on carbon sequestration, sediment accretion, and elevation change in the Ebro River Delta: Implications for wetland restoration. Estuarine, Coastal and Shelf Science, 222: 32-42. Flower-Ellis, J.G.K., Olsson, L., 1978. Litterfall in an age series of scots pine stands and its variation by components during the years 1973-1976. Swedish Coniferous Project, Technic Report, 15: 1-62.
  • Gautam, T.P., Mandal, T.N., 2018. Storage and flux of nutrients in disturbed and undisturbed tropical moist forest of Eastern Nepal. International Journal of Forerstry Research, 2018: 1-12. https://doi.org/10.1155/2018/8516321
  • Giweta, M., 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(11). https://doi.org/10.1186/s41610-020-0151-2
  • Gonzalez, E., 2012. Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica, 31(1): 173-186. DOI: 10.23818/limn.31.16.
  • Hansen, K., Vesterdal, L., Schmidt, I.K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L.B., Bille-Hansen, J., 2009. Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257: 2133–2144.
  • Hu, S., Niu, Z., Chen, Y., Li, L., Zhang, H., 2017. Global wetlands: Potential distribution, wetland loss, and status. Science of Total Environment, 586: 319-327. doi: 10.1016/j.scitotenv.2017.02.001. Epub 2017 Feb 9. PMID: 28190574.
  • Infante-Mata, D., Moreno-Casasola, P., MaderoVega, C., Castillo-Campos, G., Warner, B.G., 2011. Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico. Forest Ecology and Management, 262: 1514-1531.
  • Irmak, A., Çepel, N., 1968. Belgrad Ormanı’nda seçilen birer kayın, meşe, karaçam meşceresinde yıllık yaprak dökümünün miktarı ve bu yolla toprağa verilen besin maddelerinin tespiti üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, A18(2): 53-76
  • Jonczak, J., 2013. Dynamics, structure and properties of plant litterfall in a 120-year old beech stand in Middle Pomerania between 2007-2010. Soil Science Annual, 64(1): 8-13.
  • Kavvadiasa, V.A., Alifragisa, D., Tsiontsisb, A., Brofasc, G., Stamatelosd, G., 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management, 144: 113-127. https://doi.org/10.1016/S0378-1127(00)00365-0
  • Kim, C., Jeong, J., Cho, H.S., Son, Y., 2010. Carbon and nitrogen status of litterfall, litter decomposition and soil in even-aged larch, red pine, and rigitaeda pine plantations. Journal of Plant Reserach, 123: 403-409. https://doi.org/10.1007/s10265-010-0317-6
  • Kim, Y.S., Yi, M.J., Lee, Y.Y., Kobayashi, M., Son, Y., 2009. Estimation of carbon storage, carbon inputs, and soil CO2 efflux of alder plantations on granite soil in central Korea: comparison with japanese larch plantation, Landscape and Ecological Engineering, 5: 157-166.
  • Kiracıoğlu, Ö., Güner, Ş.T., Karataş, R., 2023. Marmara Bölgesi’ndeki doğu kayını ormanlarında gelişim çağlarına göre dökülme miktarının ve bu yolla ölü örtüye giren karbon stokunun belirlenmesi. Türkiye Ormancılık Dergisi, 24(3): 213-222. DOI: 10.18182/tjf.1318425
  • Koray, E.Ş., Tolunay, D., 2020. Türkmen Dağı karaçam meşcerelerinde döküm ile ekosisteme giren besin maddesi miktarları. Türkiye Ormancılık Dergisi, 21(3): 201-214.
  • Lake, P.S., 1995. Of floods and droughts: River and stream ecosystems of Australia. In: River and Stream Ecosystems. Ecosystems of the World, (Ed: Cushing, C.E., Cummins K. W., Minshall, G.W.), Elsevier, Amsterdam, The Netherlands, pp. 659–694. Lausch, A., Baade, J., Bannehr, L., Borg, E., Bumberger, J., Chabrilliat, S., Dietrich, P., Gerighausen, H., Glässer, C., Hacker, J.M., Haase, D., Jagdhuber, T., Jany, S., Jung, A., Karnieli, A., Kraemer, R., Makki, M., Mielke, C., Möller, M., Mollenhauer, H., Montzka, C., Pause, M., Rogass, C., Rozenstein, O., Schmullius, C., Schrodt, F., Schrön, M., Schulz, K., Schütze, C., Schweitzer, C., Selsam, P., Skidmore, A.K., Spengler, D., Thiel, C., Truckenbrodt, S.C., Vohland, M., Wagner, R., Weber, U., Werban, U., Wollschlager, U., Zacharias, S., Schaepman, M.E., 2019. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 11(20): 2356. https://doi.org/10.3390/rs11202356
  • Lindsay, E.A., French, K., 2005. Litterfall and nitrogen cycling following invasion by Chrysanthemoides monilifera ssp. rotundata in coastal Australia. Journal of Applied Ecolology, 42: 556-566. https://doi.org/10.1111/j.1365-2664.2005.01036.x
  • Liu, C., Westman, C.J., Berg, B., Kutsch, W., Wang, G.Z., Man, R., Ilvesniemi, H., 2004. Variation in litter climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13: 105-114.
  • Makineci, E. 1999. İstanbul Üniversitesi Orman Fakültesi araştırma ormanındaki baltalıkların koruya dönüştürülmesi işlemlerinin ölü örtü ve topraktaki değişime etkileri. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Matthews, E., Fung, I., 1987. Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1: 61-86, doi:10.1029/GB001i001p00061.
  • Meentemeyer, V., Box, E.O. Thompson, R., 1982. World patterns and amounts of terrestrial plant litter production. BioScience, 32: 125-128.
  • Muzika, R.M., Gladden, J.B., Haddock, J.D., 1987. Structural and functional aspects of succession in Southeastern floodplain forests following a major disturbance. The American Midland Naturalist, 117: 1-9.
  • Nordén, U., 1994. Leaf litterfall concentrations and fluxes of elements in deciduous tree species. Scandinavian Journal of Forest Research, 9: 9–16. https://doi.org/10.1080/02827589409382807
  • Oziegbe, M.B., Muoghalu, J.I., Oke, S.O., 2011. Litterfall, precipitation and nutrient fluxes in a secondary lowland rain forest in Ile-Ife, Nigeria. Acta Botanica Brasilica, 25: 664-671. https://doi.org/10.1590/s0102-33062011000300020
  • Park, B.B., Rahman, A., Han, S.H., Youn, W.B., Hyun, H.J., Hernandez, J., An, J.Y., 2020. Carbon and nutrient inputs by litterfall in evergreen and deciduous forests in Korea. Forests, 11(2), 143. https://doi.org/10.3390/f11020143
  • Pitman R., Bastrup-Birk A., Breda N., Rautio P., 2010. Part XIII: Sampling and Analysis of Litterfall. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute for Forests Ecosystems, Eberswalde, Germany, 14 p. + Annex http://icp-forests.net/page/icp-forests-manual
  • Regina., I.S., Tarazona, T., 2000. Nutrient return to the soil through litterfall and throughfall under beech and pine stands of sierra de la Demanda, Spain. Arid Soil Research and Rehabilitation, 14(3): 239-252. http://dx.doi.org/10.1080/ 089030600406653
  • Rogers, H.M., 2002. Litterfall, decomposition and nutrient release in a lowland tropical rain forest, Morobe Province, Papua New Guinea. Journal of Tropical Ecology, 18: 449-456. https://doi.org/10.1017/S0266467402002304 Rood, S.B., Patino, S., Coombs, K., Tyree, M.T., 2000. Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees, 14: 248–257.
  • Ryan, M.G., Binkley, D., Fownes, J.H., 1997. Age-related decline in forest productivity: Pattern and process. Advances in Ecological Research, 27: 213–261.
  • Sargıncı, M., Yıldız, O., Tolunay, D., Toprak, B., Temür, Ş., 2021. Leaf litter dynamics in Western Black Sea mountainous forest ecosystems. Canadian Journal of Forest Research, 51(12): 1821- 1832. https://doi.org/10.1139/cjfr-2020-0489
  • Sayer, E.J, Tanner, E.V.J., 2010. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology, 98: 1052–1062. https://doi.org/10.1111/j.1365-2745.2010.01680.x
  • Shure, D.J., Gottschalk, M.R., 1985. Litterfall patterns in a floodplain forest. The American Midland Naturalist Journal, 114: 98-111.
  • Smith, F.K., Long, J.N., 2001. Age-related decline in forest growth: an emergent property. Forerst Ecology and Management, 144: 175–181.
  • Tabacchi, E., Planty-Tabacchi, A.M., 2003. Recent changes in riparian vegetation: Possible consequences on dead wood processing along rivers. River Research and Applications, 19: 251–263.
  • Tam, N.F.Y., Wong, Y.S., Lan, C.Y., Wang, L.N., 1998. Litter production and decomposition in a subtropical mangrove swamp receiving wastewater. Journal of Experimental Marine Biology and Ecology, 226: 1-18. https://doi.org/10.1016/S0022-0981(97)00233-5
  • Tesfay, F., Kibret, K., Gebrekirstos, A., Hadgu, K.M., 2020. Litterfall production and associated carbon and nitrogen flux along exclosure chronosequence at Kewet district, central lowland of Ethiopia. Environmental Systems Research, 9, 11. https://doi.org/10.1186/s40068-020-00172-7
  • Tonin, A.M., Gonçalves, J.F., Bambi, P., Couceiro, S.R.M., Feitoza, L.A.M., Fontana, L.E., Hamada, N., Hepp, L.U., Lezan-Kowalczuk, V.G., Leite, G.F.M., Lemes-Silva, A.L., Lisboa, L.K., Loureiro, R.C., Martins, R.T., Medeiros, A.O., Morais, P.B., Moretto, Y., Oliveria, P.C.A., Pereira, E.B., Ferreira, L.P., Pérez, J., Petrucio, M.M., Reis, D.F., Rezende, R.S., Roque, N., Santos, L.E.P., Siegloch, A.E., Tonello, G., Boyero, L., 2017. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Scientific Reports, 7:1-14. https://doi.org/10.1038/s41598-017-10576-8
  • Torres, J.R., Barba, E., Choix, F.J., 2018. Mangrove productivity and phenology in relation to hydroperiod and physical-chemistry properties of water and sediment in Biosphere Reserve, Centla wetland, Mexico. Tropical Conservation Science, 11, 1–14.
  • Xia, S., Song, Z., Van Zwieten, L., Guo, L., Yu, C., Wang, W., Li, Q., Hartley, I.P., Yang, Y., Liu, H., Wang, Y., Ran, X., Liu, C., Wang, H., 2022. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Global Change Biology, 28, 6065–6085. DOI: 10.1111/gcb.16325
  • Venterink, H.O., Davidsson, T.E., Kiehl, K., Leonardson, L., 2002. Impact of drying and rewetting on N, P and K dynamics in a wetland soil. Plant and Soil, 243(1), 119–130.
  • Williams-Linera, G., Tolome, J., 1996. Litterfall, temperate and Tropical dominant trees, and climate in a Mexican lower montane forest. Biotropica, 28: 649–656 DOI 10.2307/2389051.

Annual litterfall and carbon and nutrient inputs into alder stands in Bursa, Karacabey forested wetlands

Year 2024, , 156 - 165, 28.06.2024
https://doi.org/10.18182/tjf.1444895

Abstract

Annual litterfall and the amount of carbon and macro (N, P, K, Ca, Mg and S) and micro nutrients (Fe, Mn, Na, Cu, Zn, Cl, Ni and Co) reaching into the forest floor by litterfall were determined in Kzc3 (d1,3=20-35,9 cm) and Kzd3 (d1,3=36,0-51,9 cm stand development stages of natural alder stands (Alnus glutinosa L.) growing at two different sites (floodplain and terrestrial) in Bursa Karacabey forested wetlands. The study covers the years of 2021, 2022 and 2023. Results showed that annual litterfall in the floodplain site was 10407 kg/ha for the Kzc3 and 7678 kg/ha for the Kzd3 stands, while, it was 8157 and 5907 kg/ha/year in the terrestrial site respectively. The foliage contribution to the total litterfall was 45% for the Kzd3 and 47% for the Kzd3 in the floodplain site, while it was 37 and 41% in the terrestrial sites respectively. The litterfall varied with the stand type, and it increased with the diameter and age of the stands. The annual carbon and macro- and micro-nutrients inputs into the forest floor litter through by the litterfall in the floodplain site were generally higher than in the terrestrial site. For example, annual C, N, P, K, Ca, Mg and S inputs into the floodplain sites were 4154; 130; 15; 48; 244; 48 and 24 kg/ha/yr respectively, while they were 3051; 104; 27; 49; 202; 38 and 32 kg/ha in the terrestrial sites, respectively. This study indicates that litterfall production and nutrient inputs into the alder stands significantly vary with water condition and stand development stages in the forested wetland ecosystems.

Supporting Institution

TÜBİTAK

Project Number

121O702

Thanks

Çalışma, TÜBİTAK 1001 projesi kapsamında (Proje No 121O702) desteklenmiştir. Bu bakımdan TÜBİTAK’a teşekkürlerimizi sunarız.

References

  • Akay, A.E., Gencal, B., Taş, İ., 2017. Spatiotemporal change detection using landsat imagery: The case study of Karacabey flooded forest, Bursa, Turkey, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4th International GeoAdvances Workshop, 14-15 October, Safranbolu, Karabuk, Turkey, pp. 31-35.
  • Anderson, J.M., Ingram, J.S.I., 1993. Tropical Soil Biology and Fertlity: A Handbook for Methods (2nd edition). Wallingford, Oxfordshire: CAB International.
  • Aygün, D., 2021. Arazi kullanım değişikliğinin Bursa, Karacabey Longoz ormanlarının toprak organik karbon ve toplam azot stok oranlarına etkileri. Yüksek Lisans Tezi, Bursa Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Bursa.
  • Barlow, J., Gardner, T.A., Ferreira, L.V., Peres, C.A., 2007. Litterfall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. Forest Ecology and Management, 247: 91-97. https://doi.org/10.1016/j.foreco.2007.04.017
  • Barnes, B.V., Zak, D.R., Denton, S.R., Spurr, S.H., 1998. Forest Ecology. 4 th ed. John Wiley and Sons, New York.
  • Bray, J.R., Gorham, E., 1964. Litter production in forests of the world. Advances in Ecological Research, 2: 101-157.
  • Camargo, M., Giarrizzo, T., Jesus, A., 2015. Effect of seasonal flooding cycle on litterfall production in alluvialrainforest on the middle Xingu River (Amazon basin, Brazil). Brazilian Journal of Biology, 75: 250-256. doi: 10.1590/1519-6984.00514BM
  • Celentano, D., Zahawi, R.A., Finegan, B., Ostertag, R., Cole, R.J., Holl, K.D., 2011. Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica, 43: 279–287. https://doi.org/10.1111/j.1744-7429.2010.00688.x
  • Çakır, M., Akburak, S., 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University, 67(2): 178-193.http://dx.doi.org/10.17099/jffiu.301602
  • Çakır, M., Akburak, S., Sargıncı, M., 2019. Çankırı bölgesi karaçam (Pinus nigra Arnold.) meşcerelerinde ölü örtü ayrışması ile mikroeklembacaklılar ve mikrobiyal aktivitenin zamansal değişimi ve toprağa verilen besin maddeleri. TÜBİTAK Proje Sonuç Raporu, Proje Numarası, 215O572, Ankara.
  • Dawoe, E.K., Isaac, M.E., Quashie-Sam, J., 2010. Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant and Soil, 330: 55-64. https://doi.org/10.1007/s11104-009-0173-0
  • Demessie, A., Singh, B.R., Lal, R., Strand, L.T., 2012. Leaf litterfall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agriculture Scandinavica, Section B- Soil and Plant Science, 62: 467-476. https://doi.org/10.1080/09064710.2011.645497
  • Dimitrova, V., Damyanova, S., 2023. Chemical composition of litterfall in beech (Fagus sylvatica L.) forests. Wseas Transactions on Environment and Development, 19: 412-417. https://doi.org/10.37394/232015.2023.19.38
  • Dimitrova, V., Dimitrov, D., Malchev, D., 2023. Litterfall in beech forest (Fagus sylvatica L.). V. International Halich Congress on Multidisciplinary Scientific Research, 15-16 January, Istanbul, Türkiye, pp. 702-706.
  • Fennessy, M.S., Ibáñez, C., Calvo-Cubero, J., Sharpe, P., Rovira, A., Callaway, J., Caiola, N., 2019. Environmental controls on carbon sequestration, sediment accretion, and elevation change in the Ebro River Delta: Implications for wetland restoration. Estuarine, Coastal and Shelf Science, 222: 32-42. Flower-Ellis, J.G.K., Olsson, L., 1978. Litterfall in an age series of scots pine stands and its variation by components during the years 1973-1976. Swedish Coniferous Project, Technic Report, 15: 1-62.
  • Gautam, T.P., Mandal, T.N., 2018. Storage and flux of nutrients in disturbed and undisturbed tropical moist forest of Eastern Nepal. International Journal of Forerstry Research, 2018: 1-12. https://doi.org/10.1155/2018/8516321
  • Giweta, M., 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(11). https://doi.org/10.1186/s41610-020-0151-2
  • Gonzalez, E., 2012. Seasonal patterns of litterfall in the floodplain forest of a large Mediterranean river. Limnetica, 31(1): 173-186. DOI: 10.23818/limn.31.16.
  • Hansen, K., Vesterdal, L., Schmidt, I.K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L.B., Bille-Hansen, J., 2009. Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257: 2133–2144.
  • Hu, S., Niu, Z., Chen, Y., Li, L., Zhang, H., 2017. Global wetlands: Potential distribution, wetland loss, and status. Science of Total Environment, 586: 319-327. doi: 10.1016/j.scitotenv.2017.02.001. Epub 2017 Feb 9. PMID: 28190574.
  • Infante-Mata, D., Moreno-Casasola, P., MaderoVega, C., Castillo-Campos, G., Warner, B.G., 2011. Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico. Forest Ecology and Management, 262: 1514-1531.
  • Irmak, A., Çepel, N., 1968. Belgrad Ormanı’nda seçilen birer kayın, meşe, karaçam meşceresinde yıllık yaprak dökümünün miktarı ve bu yolla toprağa verilen besin maddelerinin tespiti üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, A18(2): 53-76
  • Jonczak, J., 2013. Dynamics, structure and properties of plant litterfall in a 120-year old beech stand in Middle Pomerania between 2007-2010. Soil Science Annual, 64(1): 8-13.
  • Kavvadiasa, V.A., Alifragisa, D., Tsiontsisb, A., Brofasc, G., Stamatelosd, G., 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management, 144: 113-127. https://doi.org/10.1016/S0378-1127(00)00365-0
  • Kim, C., Jeong, J., Cho, H.S., Son, Y., 2010. Carbon and nitrogen status of litterfall, litter decomposition and soil in even-aged larch, red pine, and rigitaeda pine plantations. Journal of Plant Reserach, 123: 403-409. https://doi.org/10.1007/s10265-010-0317-6
  • Kim, Y.S., Yi, M.J., Lee, Y.Y., Kobayashi, M., Son, Y., 2009. Estimation of carbon storage, carbon inputs, and soil CO2 efflux of alder plantations on granite soil in central Korea: comparison with japanese larch plantation, Landscape and Ecological Engineering, 5: 157-166.
  • Kiracıoğlu, Ö., Güner, Ş.T., Karataş, R., 2023. Marmara Bölgesi’ndeki doğu kayını ormanlarında gelişim çağlarına göre dökülme miktarının ve bu yolla ölü örtüye giren karbon stokunun belirlenmesi. Türkiye Ormancılık Dergisi, 24(3): 213-222. DOI: 10.18182/tjf.1318425
  • Koray, E.Ş., Tolunay, D., 2020. Türkmen Dağı karaçam meşcerelerinde döküm ile ekosisteme giren besin maddesi miktarları. Türkiye Ormancılık Dergisi, 21(3): 201-214.
  • Lake, P.S., 1995. Of floods and droughts: River and stream ecosystems of Australia. In: River and Stream Ecosystems. Ecosystems of the World, (Ed: Cushing, C.E., Cummins K. W., Minshall, G.W.), Elsevier, Amsterdam, The Netherlands, pp. 659–694. Lausch, A., Baade, J., Bannehr, L., Borg, E., Bumberger, J., Chabrilliat, S., Dietrich, P., Gerighausen, H., Glässer, C., Hacker, J.M., Haase, D., Jagdhuber, T., Jany, S., Jung, A., Karnieli, A., Kraemer, R., Makki, M., Mielke, C., Möller, M., Mollenhauer, H., Montzka, C., Pause, M., Rogass, C., Rozenstein, O., Schmullius, C., Schrodt, F., Schrön, M., Schulz, K., Schütze, C., Schweitzer, C., Selsam, P., Skidmore, A.K., Spengler, D., Thiel, C., Truckenbrodt, S.C., Vohland, M., Wagner, R., Weber, U., Werban, U., Wollschlager, U., Zacharias, S., Schaepman, M.E., 2019. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 11(20): 2356. https://doi.org/10.3390/rs11202356
  • Lindsay, E.A., French, K., 2005. Litterfall and nitrogen cycling following invasion by Chrysanthemoides monilifera ssp. rotundata in coastal Australia. Journal of Applied Ecolology, 42: 556-566. https://doi.org/10.1111/j.1365-2664.2005.01036.x
  • Liu, C., Westman, C.J., Berg, B., Kutsch, W., Wang, G.Z., Man, R., Ilvesniemi, H., 2004. Variation in litter climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13: 105-114.
  • Makineci, E. 1999. İstanbul Üniversitesi Orman Fakültesi araştırma ormanındaki baltalıkların koruya dönüştürülmesi işlemlerinin ölü örtü ve topraktaki değişime etkileri. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Matthews, E., Fung, I., 1987. Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1: 61-86, doi:10.1029/GB001i001p00061.
  • Meentemeyer, V., Box, E.O. Thompson, R., 1982. World patterns and amounts of terrestrial plant litter production. BioScience, 32: 125-128.
  • Muzika, R.M., Gladden, J.B., Haddock, J.D., 1987. Structural and functional aspects of succession in Southeastern floodplain forests following a major disturbance. The American Midland Naturalist, 117: 1-9.
  • Nordén, U., 1994. Leaf litterfall concentrations and fluxes of elements in deciduous tree species. Scandinavian Journal of Forest Research, 9: 9–16. https://doi.org/10.1080/02827589409382807
  • Oziegbe, M.B., Muoghalu, J.I., Oke, S.O., 2011. Litterfall, precipitation and nutrient fluxes in a secondary lowland rain forest in Ile-Ife, Nigeria. Acta Botanica Brasilica, 25: 664-671. https://doi.org/10.1590/s0102-33062011000300020
  • Park, B.B., Rahman, A., Han, S.H., Youn, W.B., Hyun, H.J., Hernandez, J., An, J.Y., 2020. Carbon and nutrient inputs by litterfall in evergreen and deciduous forests in Korea. Forests, 11(2), 143. https://doi.org/10.3390/f11020143
  • Pitman R., Bastrup-Birk A., Breda N., Rautio P., 2010. Part XIII: Sampling and Analysis of Litterfall. In: UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute for Forests Ecosystems, Eberswalde, Germany, 14 p. + Annex http://icp-forests.net/page/icp-forests-manual
  • Regina., I.S., Tarazona, T., 2000. Nutrient return to the soil through litterfall and throughfall under beech and pine stands of sierra de la Demanda, Spain. Arid Soil Research and Rehabilitation, 14(3): 239-252. http://dx.doi.org/10.1080/ 089030600406653
  • Rogers, H.M., 2002. Litterfall, decomposition and nutrient release in a lowland tropical rain forest, Morobe Province, Papua New Guinea. Journal of Tropical Ecology, 18: 449-456. https://doi.org/10.1017/S0266467402002304 Rood, S.B., Patino, S., Coombs, K., Tyree, M.T., 2000. Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees, 14: 248–257.
  • Ryan, M.G., Binkley, D., Fownes, J.H., 1997. Age-related decline in forest productivity: Pattern and process. Advances in Ecological Research, 27: 213–261.
  • Sargıncı, M., Yıldız, O., Tolunay, D., Toprak, B., Temür, Ş., 2021. Leaf litter dynamics in Western Black Sea mountainous forest ecosystems. Canadian Journal of Forest Research, 51(12): 1821- 1832. https://doi.org/10.1139/cjfr-2020-0489
  • Sayer, E.J, Tanner, E.V.J., 2010. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology, 98: 1052–1062. https://doi.org/10.1111/j.1365-2745.2010.01680.x
  • Shure, D.J., Gottschalk, M.R., 1985. Litterfall patterns in a floodplain forest. The American Midland Naturalist Journal, 114: 98-111.
  • Smith, F.K., Long, J.N., 2001. Age-related decline in forest growth: an emergent property. Forerst Ecology and Management, 144: 175–181.
  • Tabacchi, E., Planty-Tabacchi, A.M., 2003. Recent changes in riparian vegetation: Possible consequences on dead wood processing along rivers. River Research and Applications, 19: 251–263.
  • Tam, N.F.Y., Wong, Y.S., Lan, C.Y., Wang, L.N., 1998. Litter production and decomposition in a subtropical mangrove swamp receiving wastewater. Journal of Experimental Marine Biology and Ecology, 226: 1-18. https://doi.org/10.1016/S0022-0981(97)00233-5
  • Tesfay, F., Kibret, K., Gebrekirstos, A., Hadgu, K.M., 2020. Litterfall production and associated carbon and nitrogen flux along exclosure chronosequence at Kewet district, central lowland of Ethiopia. Environmental Systems Research, 9, 11. https://doi.org/10.1186/s40068-020-00172-7
  • Tonin, A.M., Gonçalves, J.F., Bambi, P., Couceiro, S.R.M., Feitoza, L.A.M., Fontana, L.E., Hamada, N., Hepp, L.U., Lezan-Kowalczuk, V.G., Leite, G.F.M., Lemes-Silva, A.L., Lisboa, L.K., Loureiro, R.C., Martins, R.T., Medeiros, A.O., Morais, P.B., Moretto, Y., Oliveria, P.C.A., Pereira, E.B., Ferreira, L.P., Pérez, J., Petrucio, M.M., Reis, D.F., Rezende, R.S., Roque, N., Santos, L.E.P., Siegloch, A.E., Tonello, G., Boyero, L., 2017. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Scientific Reports, 7:1-14. https://doi.org/10.1038/s41598-017-10576-8
  • Torres, J.R., Barba, E., Choix, F.J., 2018. Mangrove productivity and phenology in relation to hydroperiod and physical-chemistry properties of water and sediment in Biosphere Reserve, Centla wetland, Mexico. Tropical Conservation Science, 11, 1–14.
  • Xia, S., Song, Z., Van Zwieten, L., Guo, L., Yu, C., Wang, W., Li, Q., Hartley, I.P., Yang, Y., Liu, H., Wang, Y., Ran, X., Liu, C., Wang, H., 2022. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Global Change Biology, 28, 6065–6085. DOI: 10.1111/gcb.16325
  • Venterink, H.O., Davidsson, T.E., Kiehl, K., Leonardson, L., 2002. Impact of drying and rewetting on N, P and K dynamics in a wetland soil. Plant and Soil, 243(1), 119–130.
  • Williams-Linera, G., Tolome, J., 1996. Litterfall, temperate and Tropical dominant trees, and climate in a Mexican lower montane forest. Biotropica, 28: 649–656 DOI 10.2307/2389051.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Forest Ecosystems
Journal Section Orijinal Araştırma Makalesi
Authors

Temel Sarıyıldız 0000-0003-3451-3229

Project Number 121O702
Early Pub Date June 28, 2024
Publication Date June 28, 2024
Submission Date February 29, 2024
Acceptance Date May 16, 2024
Published in Issue Year 2024

Cite

APA Sarıyıldız, T. (2024). Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi. Turkish Journal of Forestry, 25(2), 156-165. https://doi.org/10.18182/tjf.1444895
AMA Sarıyıldız T. Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi. Turkish Journal of Forestry. June 2024;25(2):156-165. doi:10.18182/tjf.1444895
Chicago Sarıyıldız, Temel. “Bursa, Karacabey Subasar Ormanı kızılağaç meşcerelerinde yıllık döküm Miktarı Ve Bu Yolla Ekosisteme Giren Karbon Ve Besin Maddesi”. Turkish Journal of Forestry 25, no. 2 (June 2024): 156-65. https://doi.org/10.18182/tjf.1444895.
EndNote Sarıyıldız T (June 1, 2024) Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi. Turkish Journal of Forestry 25 2 156–165.
IEEE T. Sarıyıldız, “Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi”, Turkish Journal of Forestry, vol. 25, no. 2, pp. 156–165, 2024, doi: 10.18182/tjf.1444895.
ISNAD Sarıyıldız, Temel. “Bursa, Karacabey Subasar Ormanı kızılağaç meşcerelerinde yıllık döküm Miktarı Ve Bu Yolla Ekosisteme Giren Karbon Ve Besin Maddesi”. Turkish Journal of Forestry 25/2 (June 2024), 156-165. https://doi.org/10.18182/tjf.1444895.
JAMA Sarıyıldız T. Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi. Turkish Journal of Forestry. 2024;25:156–165.
MLA Sarıyıldız, Temel. “Bursa, Karacabey Subasar Ormanı kızılağaç meşcerelerinde yıllık döküm Miktarı Ve Bu Yolla Ekosisteme Giren Karbon Ve Besin Maddesi”. Turkish Journal of Forestry, vol. 25, no. 2, 2024, pp. 156-65, doi:10.18182/tjf.1444895.
Vancouver Sarıyıldız T. Bursa, Karacabey subasar ormanı kızılağaç meşcerelerinde yıllık döküm miktarı ve bu yolla ekosisteme giren karbon ve besin maddesi. Turkish Journal of Forestry. 2024;25(2):156-65.