Research Article
BibTex RIS Cite

Ultrasonik dalga yayılımı ve basma testi ile elde edilen doğu kayını odununun (Fagus orientalis L.) sıcaklığa bağlı Young’s modüllerinin karşılaştırılması

Year 2018, , 185 - 191, 21.07.2018
https://doi.org/10.18182/tjf.397907

Abstract

Ahşap malzemenin mekanik özellikleri birçok doğal ve çevresel faktörlere bağlı olarak değişmektedir. Sıcaklık bu faktörlerden biridir ve bu çalışmada sıcaklığın kayın odunu Young’s modülü’ne etkisi incelenmiştir. Lif yönlü (L) basma testi örnekleri 2, 5 ve 8 saat süre boyunca 120, 150, 180 ve 210°C sıcaklığa maruz bırakılmıştır. Sıcaklığa maruz bırakma işleminde atmosferik ortamda çalışan etüv kullanılmıştır. Statik ve dinamik Young’s modülü değerleri basma testi ve ultrasonik dalga yayılımı yöntemleri ile belirlenmiştir. Ultrasonik ölçümlerin başarısını belirlemek için elde edilen sonuçlar birbirleri ile regresyon analizi ile karşılaştırılmıştır. 20x20x60 mm ölçülerindeki tüm test örnekleri 20±2°C sıcaklık ve %65 bağıl nem koşullarında iklimlendirilmiştir. Test edilen örneklerin deformasyon verileri bi-aksiyal ekstensometre kullanılarak elde edilmiştir ve sonrasında gerilme-şekil değiştirme eğrileri oluşturulmuştur. Statik Young’s modülü değerleri gerilme-şekil değiştirme eğrilerinin doğrusal elastik bölgesindeki gerilme-şekil değiştirme verilerinden hesaplanmıştır. Edyn ultrasonik dalga hızı ve örnek yoğunluğundan tahmin edilmiştir. Hızlar, ultrasonik ölçümler ile elde edilen dalga uçuş süreleri kullanılarak hesaplanmıştır. Sıcaklık ve süre bağlamında dinamik ve statik elastikiyet modülleri arasındaki kabul edilebilir ve iyi dereceli ilişkiler 0.78 ile 0.94 arasında değişen belirtme katsayıları ile belirlenmiştir. Sonuç olarak sıcaklığa maruz bırakılmış doğu kayını odununun L yönündeki Young’s modülü ultrasonik ölçümler ile iyi bir şekilde tahmin edilebilir.

References

  • Baradit, E., Niemz, P., 2012. Elastic constants of some native Chilean wood species using ultrasound techniques. Wood Res., 7(3): 497-504.
  • Becker, H., Noack, D., 1968. Studies on dynamic torsional viscoelasticity of wood. Wood Sci. Technol., 2(3): 213–230.
  • Boonstra, M., Van Acker, J, Tjeerdsma, B., Kegel, E., 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64: 679-690.
  • Bucur, V., 2006. Acoustics of Wood. Heidelberg, Germany: Springer-Verlag Berlin, Heidelberg.
  • Calegari, L., Gatto, D.A., Stangerlin, D.M., 2011. Influence of moisture content, specific gravity and specimen geometry on the ultrasonic pulse velocity in Eucalyptus grandis Hill ex Maiden wood. Ciência da Madeira (Brazilian Journal of Wood Science), 2(2): 64-74.
  • DeVallance, D., 2009. Non-destructive evaluation of veneer using optical scanning and ultrasonic stress wave analysis systems. Ph.D. dissertation, Oregon State University, Oregon, USA.
  • Dundar, T., Divos, F., 2014. European Wood NDT&NDE Research and Practical Applications. Eurasian J. For. Sci., 1(1): 35-43.
  • Dundar, T., Wang, X., As, N., Avci, E., 2016. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood. Ultrasonics, 66: 86-90.
  • Dzbenski, W., Wiktorski, T., 2007. Ultrasonic evaluation of mechanical properties of wood in standing trees. COST E 53 Conference - Quality Control for Wood and Wood Products, 2007, Warsaw, Poland, pp. 21-26.
  • Esteves, B.M., Pereira, H.M., 2009. Wood modification by heat treatment: A review. BioResources, 4(1): 370-404.
  • Gaff, M., Gasparik, M., 2015. Effect of cyclic loading on modulus of elasticity of Aspen wood. Bioresources, 10(1): 290-298.
  • Gao, S., Wang, X., Wan, L., Allison, R., 2011. Modeling temperature and moisture state effects on acoustic velocity in wood. 17th Symposium Nondestructive Testing of Wood, 2011, Sopron, Hungary, pp. 411–418.
  • Gonçalves, R., Trinca, A.J., Cerri, D.G.P., Pellis, B.P., 2011. Elastic constants of wood determined by ultrasound wave propagation. 17th Symposium Nondestructive Testing of Wood, 2011, Sopron-Hungary, pp. 435-441.
  • Gonçalves, R., Trinca, A.J., Pellis, B.P., 2014. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48: 269-287.
  • Guntekin, E., Yılmaz Aydın, T., Niemz, P., 2016a. Some orthotropic elastic properties of Fagus orientalis as influenced by moisture content. Wood Research, 61(6): 993-1002.
  • Guntekin, E., Yılmaz Aydın, T., Aydın, M., 2016b. Elastic constants of Calabrian pine and cedar. Int. Forestry Symposium, 7-10 December 2016, Kastamonu, Turkey, pp. 645-649.
  • Holeček, T., Gašparík, M., Lagana, R., Borůvka, V., Oberhofnerová, E., 2017. Measuring the modulus of elasticity of thermally treated Spruce wood using the ultrasound and resonance methods. BioResources, 12(1): 819-838.
  • Ilic, J., 2003. Dynamic MOE of 55 species using small wood beams. Holz als Roh-und Werkstoff, 61(3): 167-172.
  • Karlinasari, L., Putri, N., Turjaman, M., Wahyudi, I., Nandika, D., 2016. Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.). Turkish Journal of Agriculture and Forestry, 40: 696-704.
  • Kin, K.M., Shim, KB. 2010. Comparison between tensile and compressive young’s modulus of structural size lumber. World Conference on Timber Engineering, 20-24 June 2010, Trentino, Italy, pp. 741-748.
  • Kubojima, Y., Okano, T., Ohta, M., 1998. Vibrational Properties of Sitka Spruce Heat-treated in Nitrogen Gas. Journal of Wood Science, 44: 73-77.
  • Kubojima, Y., Okano, T., Ohta, M., 2000. Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46:8-15. Llana, D., İniguez-Gonzalez, G., Arriaga, F., Niemz, P., 2013. Influence of temperature and moisture content in non-destructive values of Scots pine (Pinus sylvestris L.). 18th International Nondestructive Testing and Evaluation of Wood Symposium, 2013, Madison, USA, pp. 451–458.
  • Llana, D.F., Iñiguez-Gonzalez, G., Arriaga, F., Niemz, P., 2014. Influence of temperature and moisture content on non-destructive measurements in Scots pine wood. Wood Research, 59(5): 769-780.
  • Metwally, K., Lefevre, E., Baron, C., Zheng, R., Pithiux, M., Lasaygues, P., 2016. Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode. Ultrasonics, 65: 10-17.
  • Oliveira, F.G.R., Sales, A., 2006. Relationship between density and ultrasonic velocity in Brazilian tropical woods. Bioresource Technology, 97: 2443-2446.
  • Oliveira, F.G.R., Campos, J.A.O., Sales, A., 2002. Ultrasonic measurements in Brazilian hardwood. Materials Research, 5(1): 51-55.
  • Reinprecht, L., Hibký, M., 2011. The type and degree of decay in spruce wood analyzed by the ultrasonic method in three anatomical directions. Bioresources, 6(4):4953-4968.
  • Ridley-Ellis, D., Popescu, C., Keating, B., Popescu, M., Hill, C.A., 2014. Stiffness changes during low temperature thermal treatment of Scots pine, assessed by acoustic NDT. 7th European Conference on Wood Modification, 2014, Lisboa, Portugal, pp. 184.
  • Schaffer, E.L., 1970. Elevated temperature effect on the longitudinal mechanical properties of wood. Ph.D. Thesis, University of Wisconsin, Dep. Eng. Mech., Madison, WI, USA.
  • Schubert, S., Gsell, D., Dual, J., Motavalli, M., Niemz, P., 2005. Resonant ultrasound spectroscopy applied to wood: comparison of the shear modulus GRT of sound and decayed wood. 14th Symposium Nondestructive Testing of Wood, 2005, Eberswalde, Germany, pp. 245–250.
  • Schubert, S.I., Gsell, D., Dual, J., Motavalli, M., Niemz, P., 2006. Rolling shear modulus and damping factor of spruce and decayed spruce estimated by modal analysis. Holzforschung, 60(1): 78–84.
  • Taghiyari, H.R., Enayati, A., Gholamiyan, H., 2012. Effects of nano silver impregnation on brittleness, physical and mechanical properties of heat treated hardwoods. Wood Science and Technology, 47(3): 467-480.
  • Teles, F.T., Del Menezzi, C.S., de Souza, F., de Souza, M.R., 2011.Nondestructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables. Ciência da Madeira, 2(1): 1-14.
  • Titta, M., 2006. Non-destructive methods for characterisation of wood material. Ph.D. dissertation, Natural and Environmental Sciences, University of Kuopio, Kuopio, Finland.
  • TS 2472, 2005. Wood- Determination of density for physical and mechanical tests. Ankara, Turkey: Turkish Standard Institute.
  • Van Dyk, H., Rice, R.W., 2005. Ultrasonic wave velocity as a moisture indicator in frozen and unfrozen lumber. Forest Products Journal, 55(6): 68-72.
  • Vázquez, C., Gonçalves, R., Guaita, M., Bertoldo, C., 2013. Determination of mechanical properties of Castanea sativa Mill. by ultrasonic wave propagation and comparison with the compression method. 18th Symposium Nondestructive Testing of Wood, 2013, Madison, WI-USA, pp. 426-433.
  • Vázquez, C., Goncalves, R., Bertoldo, C., Bano, V., Vega, A., Crespo, J., Guaita, M., 2015. Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Science and Technology, 49: 607-622.
  • Wang, N., Wang, L., 2011. Response of ultrasonic wave velocity to wood structure defect of Korean Pine. Advanced Materials and Processes, 311-313:1609-1613.
  • Windeisen, E., Bachle, H., Zimmer, B., Wegener, G., 2008. Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung, 63(6): 773-778.
  • Xavier, K., Jesus, A., Morais, J., Pinto, J. 2012a. Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain. Construction and Building Materials, 26: 207-215.
  • Xavier, J., Jesus, A., Morais, J., Pinto, J. 2012b. On the determination of the modulus of elasticity of wood by compression tests parallel to the grain. Mecânica Experimental, 20: 59-66.
  • Yang, H., Yu, L., Wang, L., 2015. Effect of moisture content on the ultrasonic acoustic properties of wood. Journal of Forestry Research, 26(3): 753-757.
  • Zhu, L., Liu, Y., Liu, Z., 2016. Effect of high temperature heat treatment on the acoustic-vibration performance of Picea jezoensis. Bioresources, 11(2): 4921–4934.

Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test

Year 2018, , 185 - 191, 21.07.2018
https://doi.org/10.18182/tjf.397907

Abstract

Mechanic properties of wood material change depending on lots of natural and environmental factors. Temperature is one of these factors and in this study, effect of temperature on Young’s modulus of Oriental beech wood was investigated. Longitudinal direction (L) compression test samples exposed to 120, 150, 180 and 210°C temperature for 2, 5 and 8 hours. A drying oven that operates in an atmospheric environment was used for temperature treatment. Static and dynamic Young’s modulus values were determined or predicted by compression test and ultrasonic wave propagation method, respectively. Results compared with each other by regression analysis to determine how successful the ultrasonic measurement is. All test samples, 20x20x60 mm, acclimatized at 20 ±2°C and 65% RH conditions. Deformation values of the tested samples were obtained by using bi-axial extensometer and then stress-strain curves were created. Static Young’s modulus was calculated by using stress-strain values from the linear elastic region of these curves. Edyn was predicted by using ultrasonic wave velocity and sample density values. Velocities were calculated by using time of flight values obtained by ultrasonic measurements. Reasonable and good relations between dynamic and static modulus of elasticity were determined by the coefficient of determination results that ranged from 0.78 to 0.94 in terms of temperature and exposure duration. Consequently, L direction Young’s modulus of Oriental beech wood that exposed to temperature can be well predicted by using ultrasonic measurement.

References

  • Baradit, E., Niemz, P., 2012. Elastic constants of some native Chilean wood species using ultrasound techniques. Wood Res., 7(3): 497-504.
  • Becker, H., Noack, D., 1968. Studies on dynamic torsional viscoelasticity of wood. Wood Sci. Technol., 2(3): 213–230.
  • Boonstra, M., Van Acker, J, Tjeerdsma, B., Kegel, E., 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, 64: 679-690.
  • Bucur, V., 2006. Acoustics of Wood. Heidelberg, Germany: Springer-Verlag Berlin, Heidelberg.
  • Calegari, L., Gatto, D.A., Stangerlin, D.M., 2011. Influence of moisture content, specific gravity and specimen geometry on the ultrasonic pulse velocity in Eucalyptus grandis Hill ex Maiden wood. Ciência da Madeira (Brazilian Journal of Wood Science), 2(2): 64-74.
  • DeVallance, D., 2009. Non-destructive evaluation of veneer using optical scanning and ultrasonic stress wave analysis systems. Ph.D. dissertation, Oregon State University, Oregon, USA.
  • Dundar, T., Divos, F., 2014. European Wood NDT&NDE Research and Practical Applications. Eurasian J. For. Sci., 1(1): 35-43.
  • Dundar, T., Wang, X., As, N., Avci, E., 2016. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood. Ultrasonics, 66: 86-90.
  • Dzbenski, W., Wiktorski, T., 2007. Ultrasonic evaluation of mechanical properties of wood in standing trees. COST E 53 Conference - Quality Control for Wood and Wood Products, 2007, Warsaw, Poland, pp. 21-26.
  • Esteves, B.M., Pereira, H.M., 2009. Wood modification by heat treatment: A review. BioResources, 4(1): 370-404.
  • Gaff, M., Gasparik, M., 2015. Effect of cyclic loading on modulus of elasticity of Aspen wood. Bioresources, 10(1): 290-298.
  • Gao, S., Wang, X., Wan, L., Allison, R., 2011. Modeling temperature and moisture state effects on acoustic velocity in wood. 17th Symposium Nondestructive Testing of Wood, 2011, Sopron, Hungary, pp. 411–418.
  • Gonçalves, R., Trinca, A.J., Cerri, D.G.P., Pellis, B.P., 2011. Elastic constants of wood determined by ultrasound wave propagation. 17th Symposium Nondestructive Testing of Wood, 2011, Sopron-Hungary, pp. 435-441.
  • Gonçalves, R., Trinca, A.J., Pellis, B.P., 2014. Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48: 269-287.
  • Guntekin, E., Yılmaz Aydın, T., Niemz, P., 2016a. Some orthotropic elastic properties of Fagus orientalis as influenced by moisture content. Wood Research, 61(6): 993-1002.
  • Guntekin, E., Yılmaz Aydın, T., Aydın, M., 2016b. Elastic constants of Calabrian pine and cedar. Int. Forestry Symposium, 7-10 December 2016, Kastamonu, Turkey, pp. 645-649.
  • Holeček, T., Gašparík, M., Lagana, R., Borůvka, V., Oberhofnerová, E., 2017. Measuring the modulus of elasticity of thermally treated Spruce wood using the ultrasound and resonance methods. BioResources, 12(1): 819-838.
  • Ilic, J., 2003. Dynamic MOE of 55 species using small wood beams. Holz als Roh-und Werkstoff, 61(3): 167-172.
  • Karlinasari, L., Putri, N., Turjaman, M., Wahyudi, I., Nandika, D., 2016. Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.). Turkish Journal of Agriculture and Forestry, 40: 696-704.
  • Kin, K.M., Shim, KB. 2010. Comparison between tensile and compressive young’s modulus of structural size lumber. World Conference on Timber Engineering, 20-24 June 2010, Trentino, Italy, pp. 741-748.
  • Kubojima, Y., Okano, T., Ohta, M., 1998. Vibrational Properties of Sitka Spruce Heat-treated in Nitrogen Gas. Journal of Wood Science, 44: 73-77.
  • Kubojima, Y., Okano, T., Ohta, M., 2000. Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46:8-15. Llana, D., İniguez-Gonzalez, G., Arriaga, F., Niemz, P., 2013. Influence of temperature and moisture content in non-destructive values of Scots pine (Pinus sylvestris L.). 18th International Nondestructive Testing and Evaluation of Wood Symposium, 2013, Madison, USA, pp. 451–458.
  • Llana, D.F., Iñiguez-Gonzalez, G., Arriaga, F., Niemz, P., 2014. Influence of temperature and moisture content on non-destructive measurements in Scots pine wood. Wood Research, 59(5): 769-780.
  • Metwally, K., Lefevre, E., Baron, C., Zheng, R., Pithiux, M., Lasaygues, P., 2016. Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode. Ultrasonics, 65: 10-17.
  • Oliveira, F.G.R., Sales, A., 2006. Relationship between density and ultrasonic velocity in Brazilian tropical woods. Bioresource Technology, 97: 2443-2446.
  • Oliveira, F.G.R., Campos, J.A.O., Sales, A., 2002. Ultrasonic measurements in Brazilian hardwood. Materials Research, 5(1): 51-55.
  • Reinprecht, L., Hibký, M., 2011. The type and degree of decay in spruce wood analyzed by the ultrasonic method in three anatomical directions. Bioresources, 6(4):4953-4968.
  • Ridley-Ellis, D., Popescu, C., Keating, B., Popescu, M., Hill, C.A., 2014. Stiffness changes during low temperature thermal treatment of Scots pine, assessed by acoustic NDT. 7th European Conference on Wood Modification, 2014, Lisboa, Portugal, pp. 184.
  • Schaffer, E.L., 1970. Elevated temperature effect on the longitudinal mechanical properties of wood. Ph.D. Thesis, University of Wisconsin, Dep. Eng. Mech., Madison, WI, USA.
  • Schubert, S., Gsell, D., Dual, J., Motavalli, M., Niemz, P., 2005. Resonant ultrasound spectroscopy applied to wood: comparison of the shear modulus GRT of sound and decayed wood. 14th Symposium Nondestructive Testing of Wood, 2005, Eberswalde, Germany, pp. 245–250.
  • Schubert, S.I., Gsell, D., Dual, J., Motavalli, M., Niemz, P., 2006. Rolling shear modulus and damping factor of spruce and decayed spruce estimated by modal analysis. Holzforschung, 60(1): 78–84.
  • Taghiyari, H.R., Enayati, A., Gholamiyan, H., 2012. Effects of nano silver impregnation on brittleness, physical and mechanical properties of heat treated hardwoods. Wood Science and Technology, 47(3): 467-480.
  • Teles, F.T., Del Menezzi, C.S., de Souza, F., de Souza, M.R., 2011.Nondestructive evaluation of a tropical hardwood: Interrelationship between methods and physical-acoustical variables. Ciência da Madeira, 2(1): 1-14.
  • Titta, M., 2006. Non-destructive methods for characterisation of wood material. Ph.D. dissertation, Natural and Environmental Sciences, University of Kuopio, Kuopio, Finland.
  • TS 2472, 2005. Wood- Determination of density for physical and mechanical tests. Ankara, Turkey: Turkish Standard Institute.
  • Van Dyk, H., Rice, R.W., 2005. Ultrasonic wave velocity as a moisture indicator in frozen and unfrozen lumber. Forest Products Journal, 55(6): 68-72.
  • Vázquez, C., Gonçalves, R., Guaita, M., Bertoldo, C., 2013. Determination of mechanical properties of Castanea sativa Mill. by ultrasonic wave propagation and comparison with the compression method. 18th Symposium Nondestructive Testing of Wood, 2013, Madison, WI-USA, pp. 426-433.
  • Vázquez, C., Goncalves, R., Bertoldo, C., Bano, V., Vega, A., Crespo, J., Guaita, M., 2015. Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Science and Technology, 49: 607-622.
  • Wang, N., Wang, L., 2011. Response of ultrasonic wave velocity to wood structure defect of Korean Pine. Advanced Materials and Processes, 311-313:1609-1613.
  • Windeisen, E., Bachle, H., Zimmer, B., Wegener, G., 2008. Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung, 63(6): 773-778.
  • Xavier, K., Jesus, A., Morais, J., Pinto, J. 2012a. Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain. Construction and Building Materials, 26: 207-215.
  • Xavier, J., Jesus, A., Morais, J., Pinto, J. 2012b. On the determination of the modulus of elasticity of wood by compression tests parallel to the grain. Mecânica Experimental, 20: 59-66.
  • Yang, H., Yu, L., Wang, L., 2015. Effect of moisture content on the ultrasonic acoustic properties of wood. Journal of Forestry Research, 26(3): 753-757.
  • Zhu, L., Liu, Y., Liu, Z., 2016. Effect of high temperature heat treatment on the acoustic-vibration performance of Picea jezoensis. Bioresources, 11(2): 4921–4934.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Tuğba Yılmaz Aydın

Murat Aydın

Publication Date July 21, 2018
Acceptance Date April 24, 2018
Published in Issue Year 2018

Cite

APA Yılmaz Aydın, T., & Aydın, M. (2018). Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test. Turkish Journal of Forestry, 19(2), 185-191. https://doi.org/10.18182/tjf.397907
AMA Yılmaz Aydın T, Aydın M. Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test. Turkish Journal of Forestry. July 2018;19(2):185-191. doi:10.18182/tjf.397907
Chicago Yılmaz Aydın, Tuğba, and Murat Aydın. “Comparison of Temperature Dependent Young’s Modulus of Oriental Beech (Fagus Orientalis L.) That Determined by Ultrasonic Wave Propagation and Compression Test”. Turkish Journal of Forestry 19, no. 2 (July 2018): 185-91. https://doi.org/10.18182/tjf.397907.
EndNote Yılmaz Aydın T, Aydın M (July 1, 2018) Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test. Turkish Journal of Forestry 19 2 185–191.
IEEE T. Yılmaz Aydın and M. Aydın, “Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test”, Turkish Journal of Forestry, vol. 19, no. 2, pp. 185–191, 2018, doi: 10.18182/tjf.397907.
ISNAD Yılmaz Aydın, Tuğba - Aydın, Murat. “Comparison of Temperature Dependent Young’s Modulus of Oriental Beech (Fagus Orientalis L.) That Determined by Ultrasonic Wave Propagation and Compression Test”. Turkish Journal of Forestry 19/2 (July 2018), 185-191. https://doi.org/10.18182/tjf.397907.
JAMA Yılmaz Aydın T, Aydın M. Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test. Turkish Journal of Forestry. 2018;19:185–191.
MLA Yılmaz Aydın, Tuğba and Murat Aydın. “Comparison of Temperature Dependent Young’s Modulus of Oriental Beech (Fagus Orientalis L.) That Determined by Ultrasonic Wave Propagation and Compression Test”. Turkish Journal of Forestry, vol. 19, no. 2, 2018, pp. 185-91, doi:10.18182/tjf.397907.
Vancouver Yılmaz Aydın T, Aydın M. Comparison of temperature dependent Young’s modulus of oriental beech (Fagus orientalis L.) that determined by ultrasonic wave propagation and compression test. Turkish Journal of Forestry. 2018;19(2):185-91.