Research Article
BibTex RIS Cite

Bazı azot bağlayıcı bitkilerin sarıçam fidanlarının gelişimi üzerine etkisi

Year 2019, , 284 - 289, 27.12.2019
https://doi.org/10.18182/tjf.579386

Abstract

Bitkiler için en önemli besin elementlerinden biri azot olup atmosferik azotun organik forma dönüştürülmesinde bazı bitkiler görev almaktadır. Köklerinde bulunan bakteriler vasıtasıyla azot bağlama yeteneğinde olan bu bitkiler azot eksikliğinin hafifletilmesi ve toprağın iyileştirilmesi bakımından önem arz etmektedir. Araştırmada azot bağlayıcı bazı türlerle birlikte yetiştirilen sarıçam (Pinus sylvestris L.) fidanlarındaki gelişim farklılıklarının ortaya koyulması amaçlanmıştır. Bu çalışma Karadeniz Teknik Üniversitesi Orman Fakültesi Araştırma ve Uygulama serasında yürütülmüştür. Alnus glutinosa, Robinia pseudoacacia ve Vicia sativa türleri azot bağlayıcı tür olarak seçilmiştir. Tohumlar Kasım ayında özel ekim kasalarına farklı ekim kombinasyonlarıyla ekilmiştir. İlk vejetasyon dönemi sonrasında bir yaşındaki sarıçam fidanlarında, fidan boyu, kök boğaz çapı ve gürbüzlük indisi değerleri belirlenmiştir. Pinus sylvestris işlemine ait fidanların ortalama boyu 3.36 cm iken, Pinus sylvestris+Vicia sativa ekim kombinasyonuna ait fidanların ortalama boyunun 6.84 cm’ye ulaştığı tespit edilmiştir. Aynı şekilde kök boğaz çapı bakımından da Pinus sylvestris+Vicia sativa ekim kombinasyonunda 0.47 mm’lik bir artış meydana geldiği görülmektedir. Özellikle diri örtü probleminin olduğu ya da rakım, iklim ve toprak özellikleri bakımından ekstrem koşullar nedeniyle kaliteli fidanların kullanılması gereken alanlarda Pinus sylvestris+Vicia sativa ekim kombinasyonu ile elde edilecek daha kaliteli fidanları kullanmak önemli bir avantaj olabilecektir.

References

  • Aldhous, J.R., 1994. Nursery policy and planning. In: Forest Nursery Practice. (Ed: Aldhous, J.R., Mason, W.L.) Forestry Commission Bulletin, HMSO, London, UK, pp. 1-12.
  • Al Gharbi, A., Hipkin, C.R., 1984. Studies on nitrate reductase in British angiosperms. I. Comparison of nitrate reductase activity in ruderal, woodland edge and woody species. New Phytol. 7, 629-639.
  • Ashby, W.C., Baker, M.B., 1968. Soil nutrients and tree growth under black locust and shortleaf pine overstories in strip-mine plantings. 1. For, 66: 66-71.
  • Binkley, D., Lousier, J.D., Cromack, K., 1984. Ecosystem effects of Sitka alder in a Douglas-fir plantation. Forest Sci, 30(1): 26-35.
  • Burris, R.H., 1988. Biological nitrogen fixation: A scientific perspective. Plant Soil, 108: 7-14.
  • DeBell, D.S., Radwan, M.A., 1979. Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantations. Bot. Gaz., 140: 97-101.
  • Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K.K., Laplaze, L., 2013. Use of Frankia and actinorhizal plants for degraded lands reclamation. Hindawi Publishing Corporation, BioMed Research International, 2013: 1-9.
  • Elkan, G.H., 1992. Biological nitrogen systems in tropical ecosystems: An overview. In: Biological Nitrogen Fixation and Sustainability of Tropical Agriculture (Ed: Mulongoy, K., Gueye, M., Spencer, D.S.C.), John Wiley&Sons, Chichester. UK, pp. 27-40.
  • Ercan, M., 1997. Bilimsel Araştırmalarda İstatistik. Genişletilmiş İkinci Baskı, Orman Bakanlığı, Kavak ve Hızlı Gelişen Tür Orman Ağaçları ve Araştırma Enstitüsü Müdürlüğü, İzmit.
  • FAO, 1993. Technical Handbook of Symbiotic Nitrogen Fixation. Legume/Rhizobium, Food and Agriculture Organization of the United Nations, Rome.
  • Friedrich, J.M., Dawson, J.O., 1984. Soil nitrogen concentration and Juglans nigra growth in mixed plots with nitrogen-fixing Alnus, Elaeagnus, Lespedeza, and Robinia species. Canadian Journal of Forest Research, 14(6): 864-868.
  • Gebauer, G., Rehder, H., Wollenweber, B., 1988. Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxanomic groups of Central Europea. Oecologia, 75, 371-385.
  • Gebauer, G., Schulze, E.D., 1997. Nitrate Nutrition of Central European Forest Trees. In: Trees-Contributions to Modern Tree Physiology (Ed: Rennenberg, H., Eschrich, W., Ziegler, H.), SPB Academic Publ. The Hahue. pp. 273-291.
  • Gökçeoğlu, M., Rehder, H., 1977. Nutrient turnover studies in alpine ecosystems. III. Communities of lower altitudes dominated by Carex sempervirens Vill. and Carex ferroginea Scop. Oecologia, 28: 317-331.
  • Graham, P.H., Vance, C.P., 2000. Nitrogen fixation in perspective: An overview of research and extension needs. Field Crops Research, 65: 93–106.
  • Güleryüz, G., Gökçeoğlu, M., 1994. Uludağ (Bursa) alpin bölgesi bazı bitki topluluklarında mineral azot oluşumu ve yıllık verimlilik. Turkish Journal of Botany, 18: 65-72.
  • Güleryüz, G., Arslan, H., 1999. Nitrate reductase activity in Verbaseum L. (Scrophulariaeea) species from the Eastem Meditterranean in dependence on altitude. Tr. J. of Botany, 23: 89-96.
  • Hansen, E.A., Dawson, J., 1982. Effect of Alnus glutinosa on hybrid Populus height growth in a short-rotation intensively cultured plantation. Forest Science, 28(1): 49-59.
  • Hasman, M., 1972. Bitkilerin Metabolizma Fizyolojisi. İstanbul Üniversitesi Yayınları, İstanbul.
  • Haynes, R.J., 1986. Uptake and assimilation of mineral nitrogen by plants. In: Mineral Nitrogen in the plant-soil system. (Ed: Haynes, R.J.) Academic Press. London and Orlando, pp. 303-362.
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M.N., Yakışır, E., Okur, O., 2014. Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2): 1-19.
  • Jaenicke, H., 1999. Good tree nursery practices: Practical guidelines for research nurseries. World Agroforestry Centre. ICRAF, Majestic Printing Works, Nairobi.
  • Langkamp, P.J., Swinden, L.B., Dalling, M.J., 1979. Nitrogen fixation by Acacia holoserica on areas restored after mining of Grooke Eylandt Northern Territory. Australian Journal of Botany, 27: 353-361.
  • Lee, I.A., Woodin, S.L., Press, M.C., 1986. Nitrogen assimilation in an ecological concept. In: Fundamental Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants (Ed.: Lambers, H., Neetson, J.J., Stulen, I.), Martinus Nijhoff Publ. Dordreeht Boston Lancester, pp. 331-346.
  • Miller, R.E., Murray, M.D., 1978. The effect of red alder on growth of Douglas fir. In utilization and management of alder. USDA Forest Service General Technical Report, PNW-70.
  • Moffat, A.J., 2000. Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry, 73(3): 215-223.
  • Mortimer, P.E., Gui, H., Xu, J., Zhang, C., Barrios, E., Hyde, K.D., 2015. Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Applied Soil Ecology, 96: 25-32.
  • Nakos, G., 1977. Acetylene Reduction (N2-Fixation) by Nodules of Acacia cyanophylla. Soil Biology and Biochemistry, 9: 131-133.
  • Özdamar, K., 1999. Paket Programlar ile İstatistiksel Veri Analizi SPSS MINITAP, Dördüncü Baskı, Kaan Kitapevi, Eskişehir.
  • Özkan, Y., 2003. Uygulamalı İstatistik 2. Sakarya Üniversitesi, Birinci Baskı, İktisadi ve İdari Bilimler Fakültesi, Sakarya Kitapevi, İstanbul.
  • Permar, T.A., Fisher, R.F., 1983. Nitrogen fixation and accretion by wax myrtle (Myrica Cerifera) in slash pine (Pinus elliottii) plantations. Forest Ecology and Management, 5: 39-46.
  • Pritchett, W.L., Fisher, R.F., 1987. Properties and Management of Forest Soils. John Wiley& Sons Inc, New York.
  • Radosevich, S.R., Hibbs, D.E., Ghersa, C.M., 2006. Effects of species mixtures on growth and stand development of Douglas-fir and red alder. Canadian Journal of Forest Researches, 36: 768-782.
  • Rehder, H., 1976. Nutrient turnover studies in alpine ecosystems. II. Phytomass and nutrient relations in the Caricetum firmae. Oecologia, 24: 49-62.
  • Runge, M., 1983. Physiology and ecology of nitrogen nutrition. In: Encyclopedia of Plant Physiology (Ed: Lange, O.L., Nobel, P.S., Osmond, P.B., Ziegler, H.), Springer-Verlag, New York, pp. 164-200.
  • Smil, V., 1999. Nitrogen in crop production. Glob Biogeol Cycl, 13: 647-662.
  • Smimoff, N., Stewart, G.R., 1985. Nitrate assimilation and translocation by higher plants. Comparative physiology and ecological consequences, Physiologia plantarum, 64: 133-140.
  • Socolow, R.H., 1999. Nitrogen management and the future of food: Lessons from the management of energy and carbon. Proceedings of the National Academy of Sciences, 96: 6001-6008.
  • Sprent, J.I., Sprent, P., 1990. Nitrogen Fixing Organisms Pure and Applied Aspects. 2nd. ed. Chapman and Hall, Cambridge, London.
  • Stokdyk, J.P., Herrman, K.S., 2014. Short-term impacts of Frangula alnus litter on forest soil properties. Water, Air, & Soil Pollution, 225: 2000.
  • Tarrant, R.F., 1983. Nitrogen Fixation in North American Forestry: Research and Application. In: Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications (Ed:Gordon, J.C., Wheeler, C.T.) M. Nijhoff, pp. 260-279.
  • Tecimen, H.B., Sevgi, O., 2008. Nitrogen transformations within forest soils by microorganisms. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 1: 179-189.
  • Thompson, B.E., 1985. Seedling morphological evaluation- What you can tell by looking. In: Evaluating seedling quality: Principles, procedures, and predictive abilities of major tests (Ed: Duryea. M.L.), Forest Research Laboratory, Oregon State University, Corvallis, OR), pp. 59-71.
  • Tilki, F., 2002. Biyolojik azot bağlanmasının ormancılıktaki önemi ve kullanımı. İstanbul Üniversitesi, Orman Fakültesi Dergisi, Seri B, 52, 1.
  • Tripp, L.N., Bezdick, D.F., Heilman, P.L., 1979. Seasonal and diurnal patterns and rates of nitrogen fixation by young red alder. Forest Science, 25: 371-380.
  • Turvey, N.D., Smethurst, P.J., 1983. Nitrogen Fixing Plants in Forest Plantation Management. In: Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications (Ed: Gordon, J.C., Wheeler, C.T.) Martinus Nijhoff Publ. The Hague, pp. 261-277.
  • Van Der Meiden, H.H., 1961. Alder in mixture with poplar. Nederlands bosbouw tiddschrift, 33: 168-171.
  • Vaughn, C.A., Center, D.M., Jones, M.B., 1986. Seasonal fluctuations in nutrient availability in some Northern California annual range soils. Soil Science, 141(1): 43-51.
  • Voigtlaender, M., Laclau, J.P., de Moraes Gonçalves, J.L., de Cássia Piccolo, M., Moreira, M.Z., Nouvellon, Y., Ranger, J., Bouillet, J.P., 2012. Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352(1-2): 99-111.
  • Wheeler, C.T., Miller, M.I., 1990. Current and Potential Uses of Actinorhizal Plants in Europe. In: The Biology of Frankia and Actinorhizal Plants (Ed: Schwinter, C.R., Tjepkema J.D.), Academic Press, San Diego, California, pp. 365-389.
  • Wheeler, C.T., 1991. Symbiotic Nitrogen Fixation. In: Physiology of Tree (Ed: Raghavendra, A.S.) J. Wiley&Sons, Inc., New York, pp. 111-136.
  • Widmann, K., Gebauer, G., Rehder, H., Ziegler, H., 1990. Biomass production and nitrogen contents of the CAM plants Kalanchoe daigremontiana and K. tubiflora in cultures with different nitrogen and water supply. Oecologia, 82: 478-483.
  • Woodmansee, R.G. Dodd, J.L. Bowman, R.A. Clark, F.E., Dickinson, C.E., 1978. Nitrogen budget of a shortgrass prairie ecosystem. Oecologia, 34: 363-376.
  • Woodrnansee, R.G., Duncan, D.A., 1980. Nitrogen and phosphorus dynamics and budgets in annual grasslands. Ecology, 61(4): 893-904.

Effects of some nitrogen-fixing plants on seedling growth of scotch pine

Year 2019, , 284 - 289, 27.12.2019
https://doi.org/10.18182/tjf.579386

Abstract

Nitrogen is one of the most important nutrients for plants, and some plants are involved in the conversion of atmospheric nitrogen to organic form. These plants are capable of nitrogen fixing by bacteria in their roots and are important in alleviating nitrogen deficiency and improving soil. The objective of this research is to determine the growth differences in Scotch pine (Pinus sylvestris L.) seedlings grown together with some nitrogen-fixing species. The study was conducted in The Research and Application Greenhouse at Faculty of Forestry, Karadeniz Technical University. Alnus glutinosa, Robinia pseudoacacia and Vicia sativa were selected as nitrogen-fixing species. Seeds were sown, by different sowing combinations, in special sowing crates in November. For 1-year-old scotch pine seedlings after the first growing period, seedling length, root collar diameter and sturdiness quotient were determined. The results indicated that while the average length of Pinus sylvestris seedlings sown alone was 3.36 cm, the average length of the seedlings belonging to Pinus sylvestris+Vicia sativa combination reached 6.84 cm. Similarly, mean root collar diameter was 0.47 mm greater in the Pinus sylvestris+Vicia sativa sowing combination. The use of higher quality seedlings obtained through sowing combination of Pinus sylvestris+Vicia sativa can be advantageous in areas where there is a ground cover problem or the use of quality seedlings is required because of extreme conditions in terms of altitude, climate and soil.

References

  • Aldhous, J.R., 1994. Nursery policy and planning. In: Forest Nursery Practice. (Ed: Aldhous, J.R., Mason, W.L.) Forestry Commission Bulletin, HMSO, London, UK, pp. 1-12.
  • Al Gharbi, A., Hipkin, C.R., 1984. Studies on nitrate reductase in British angiosperms. I. Comparison of nitrate reductase activity in ruderal, woodland edge and woody species. New Phytol. 7, 629-639.
  • Ashby, W.C., Baker, M.B., 1968. Soil nutrients and tree growth under black locust and shortleaf pine overstories in strip-mine plantings. 1. For, 66: 66-71.
  • Binkley, D., Lousier, J.D., Cromack, K., 1984. Ecosystem effects of Sitka alder in a Douglas-fir plantation. Forest Sci, 30(1): 26-35.
  • Burris, R.H., 1988. Biological nitrogen fixation: A scientific perspective. Plant Soil, 108: 7-14.
  • DeBell, D.S., Radwan, M.A., 1979. Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantations. Bot. Gaz., 140: 97-101.
  • Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K.K., Laplaze, L., 2013. Use of Frankia and actinorhizal plants for degraded lands reclamation. Hindawi Publishing Corporation, BioMed Research International, 2013: 1-9.
  • Elkan, G.H., 1992. Biological nitrogen systems in tropical ecosystems: An overview. In: Biological Nitrogen Fixation and Sustainability of Tropical Agriculture (Ed: Mulongoy, K., Gueye, M., Spencer, D.S.C.), John Wiley&Sons, Chichester. UK, pp. 27-40.
  • Ercan, M., 1997. Bilimsel Araştırmalarda İstatistik. Genişletilmiş İkinci Baskı, Orman Bakanlığı, Kavak ve Hızlı Gelişen Tür Orman Ağaçları ve Araştırma Enstitüsü Müdürlüğü, İzmit.
  • FAO, 1993. Technical Handbook of Symbiotic Nitrogen Fixation. Legume/Rhizobium, Food and Agriculture Organization of the United Nations, Rome.
  • Friedrich, J.M., Dawson, J.O., 1984. Soil nitrogen concentration and Juglans nigra growth in mixed plots with nitrogen-fixing Alnus, Elaeagnus, Lespedeza, and Robinia species. Canadian Journal of Forest Research, 14(6): 864-868.
  • Gebauer, G., Rehder, H., Wollenweber, B., 1988. Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxanomic groups of Central Europea. Oecologia, 75, 371-385.
  • Gebauer, G., Schulze, E.D., 1997. Nitrate Nutrition of Central European Forest Trees. In: Trees-Contributions to Modern Tree Physiology (Ed: Rennenberg, H., Eschrich, W., Ziegler, H.), SPB Academic Publ. The Hahue. pp. 273-291.
  • Gökçeoğlu, M., Rehder, H., 1977. Nutrient turnover studies in alpine ecosystems. III. Communities of lower altitudes dominated by Carex sempervirens Vill. and Carex ferroginea Scop. Oecologia, 28: 317-331.
  • Graham, P.H., Vance, C.P., 2000. Nitrogen fixation in perspective: An overview of research and extension needs. Field Crops Research, 65: 93–106.
  • Güleryüz, G., Gökçeoğlu, M., 1994. Uludağ (Bursa) alpin bölgesi bazı bitki topluluklarında mineral azot oluşumu ve yıllık verimlilik. Turkish Journal of Botany, 18: 65-72.
  • Güleryüz, G., Arslan, H., 1999. Nitrate reductase activity in Verbaseum L. (Scrophulariaeea) species from the Eastem Meditterranean in dependence on altitude. Tr. J. of Botany, 23: 89-96.
  • Hansen, E.A., Dawson, J., 1982. Effect of Alnus glutinosa on hybrid Populus height growth in a short-rotation intensively cultured plantation. Forest Science, 28(1): 49-59.
  • Hasman, M., 1972. Bitkilerin Metabolizma Fizyolojisi. İstanbul Üniversitesi Yayınları, İstanbul.
  • Haynes, R.J., 1986. Uptake and assimilation of mineral nitrogen by plants. In: Mineral Nitrogen in the plant-soil system. (Ed: Haynes, R.J.) Academic Press. London and Orlando, pp. 303-362.
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M.N., Yakışır, E., Okur, O., 2014. Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2): 1-19.
  • Jaenicke, H., 1999. Good tree nursery practices: Practical guidelines for research nurseries. World Agroforestry Centre. ICRAF, Majestic Printing Works, Nairobi.
  • Langkamp, P.J., Swinden, L.B., Dalling, M.J., 1979. Nitrogen fixation by Acacia holoserica on areas restored after mining of Grooke Eylandt Northern Territory. Australian Journal of Botany, 27: 353-361.
  • Lee, I.A., Woodin, S.L., Press, M.C., 1986. Nitrogen assimilation in an ecological concept. In: Fundamental Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants (Ed.: Lambers, H., Neetson, J.J., Stulen, I.), Martinus Nijhoff Publ. Dordreeht Boston Lancester, pp. 331-346.
  • Miller, R.E., Murray, M.D., 1978. The effect of red alder on growth of Douglas fir. In utilization and management of alder. USDA Forest Service General Technical Report, PNW-70.
  • Moffat, A.J., 2000. Effects of inoculation with Frankia on the growth and nutrition of alder species and interplanted Japanese larch on restored mineral workings. Forestry, 73(3): 215-223.
  • Mortimer, P.E., Gui, H., Xu, J., Zhang, C., Barrios, E., Hyde, K.D., 2015. Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Applied Soil Ecology, 96: 25-32.
  • Nakos, G., 1977. Acetylene Reduction (N2-Fixation) by Nodules of Acacia cyanophylla. Soil Biology and Biochemistry, 9: 131-133.
  • Özdamar, K., 1999. Paket Programlar ile İstatistiksel Veri Analizi SPSS MINITAP, Dördüncü Baskı, Kaan Kitapevi, Eskişehir.
  • Özkan, Y., 2003. Uygulamalı İstatistik 2. Sakarya Üniversitesi, Birinci Baskı, İktisadi ve İdari Bilimler Fakültesi, Sakarya Kitapevi, İstanbul.
  • Permar, T.A., Fisher, R.F., 1983. Nitrogen fixation and accretion by wax myrtle (Myrica Cerifera) in slash pine (Pinus elliottii) plantations. Forest Ecology and Management, 5: 39-46.
  • Pritchett, W.L., Fisher, R.F., 1987. Properties and Management of Forest Soils. John Wiley& Sons Inc, New York.
  • Radosevich, S.R., Hibbs, D.E., Ghersa, C.M., 2006. Effects of species mixtures on growth and stand development of Douglas-fir and red alder. Canadian Journal of Forest Researches, 36: 768-782.
  • Rehder, H., 1976. Nutrient turnover studies in alpine ecosystems. II. Phytomass and nutrient relations in the Caricetum firmae. Oecologia, 24: 49-62.
  • Runge, M., 1983. Physiology and ecology of nitrogen nutrition. In: Encyclopedia of Plant Physiology (Ed: Lange, O.L., Nobel, P.S., Osmond, P.B., Ziegler, H.), Springer-Verlag, New York, pp. 164-200.
  • Smil, V., 1999. Nitrogen in crop production. Glob Biogeol Cycl, 13: 647-662.
  • Smimoff, N., Stewart, G.R., 1985. Nitrate assimilation and translocation by higher plants. Comparative physiology and ecological consequences, Physiologia plantarum, 64: 133-140.
  • Socolow, R.H., 1999. Nitrogen management and the future of food: Lessons from the management of energy and carbon. Proceedings of the National Academy of Sciences, 96: 6001-6008.
  • Sprent, J.I., Sprent, P., 1990. Nitrogen Fixing Organisms Pure and Applied Aspects. 2nd. ed. Chapman and Hall, Cambridge, London.
  • Stokdyk, J.P., Herrman, K.S., 2014. Short-term impacts of Frangula alnus litter on forest soil properties. Water, Air, & Soil Pollution, 225: 2000.
  • Tarrant, R.F., 1983. Nitrogen Fixation in North American Forestry: Research and Application. In: Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications (Ed:Gordon, J.C., Wheeler, C.T.) M. Nijhoff, pp. 260-279.
  • Tecimen, H.B., Sevgi, O., 2008. Nitrogen transformations within forest soils by microorganisms. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 1: 179-189.
  • Thompson, B.E., 1985. Seedling morphological evaluation- What you can tell by looking. In: Evaluating seedling quality: Principles, procedures, and predictive abilities of major tests (Ed: Duryea. M.L.), Forest Research Laboratory, Oregon State University, Corvallis, OR), pp. 59-71.
  • Tilki, F., 2002. Biyolojik azot bağlanmasının ormancılıktaki önemi ve kullanımı. İstanbul Üniversitesi, Orman Fakültesi Dergisi, Seri B, 52, 1.
  • Tripp, L.N., Bezdick, D.F., Heilman, P.L., 1979. Seasonal and diurnal patterns and rates of nitrogen fixation by young red alder. Forest Science, 25: 371-380.
  • Turvey, N.D., Smethurst, P.J., 1983. Nitrogen Fixing Plants in Forest Plantation Management. In: Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications (Ed: Gordon, J.C., Wheeler, C.T.) Martinus Nijhoff Publ. The Hague, pp. 261-277.
  • Van Der Meiden, H.H., 1961. Alder in mixture with poplar. Nederlands bosbouw tiddschrift, 33: 168-171.
  • Vaughn, C.A., Center, D.M., Jones, M.B., 1986. Seasonal fluctuations in nutrient availability in some Northern California annual range soils. Soil Science, 141(1): 43-51.
  • Voigtlaender, M., Laclau, J.P., de Moraes Gonçalves, J.L., de Cássia Piccolo, M., Moreira, M.Z., Nouvellon, Y., Ranger, J., Bouillet, J.P., 2012. Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil, 352(1-2): 99-111.
  • Wheeler, C.T., Miller, M.I., 1990. Current and Potential Uses of Actinorhizal Plants in Europe. In: The Biology of Frankia and Actinorhizal Plants (Ed: Schwinter, C.R., Tjepkema J.D.), Academic Press, San Diego, California, pp. 365-389.
  • Wheeler, C.T., 1991. Symbiotic Nitrogen Fixation. In: Physiology of Tree (Ed: Raghavendra, A.S.) J. Wiley&Sons, Inc., New York, pp. 111-136.
  • Widmann, K., Gebauer, G., Rehder, H., Ziegler, H., 1990. Biomass production and nitrogen contents of the CAM plants Kalanchoe daigremontiana and K. tubiflora in cultures with different nitrogen and water supply. Oecologia, 82: 478-483.
  • Woodmansee, R.G. Dodd, J.L. Bowman, R.A. Clark, F.E., Dickinson, C.E., 1978. Nitrogen budget of a shortgrass prairie ecosystem. Oecologia, 34: 363-376.
  • Woodrnansee, R.G., Duncan, D.A., 1980. Nitrogen and phosphorus dynamics and budgets in annual grasslands. Ecology, 61(4): 893-904.
There are 54 citations in total.

Details

Primary Language English
Journal Section Orijinal Araştırma Makalesi
Authors

Deniz Güney 0000-0001-7222-6162

Erhan Seyis This is me 0000-0002-7115-9997

Fahrettin Atar 0000-0003-4594-8148

Ali Bayraktar 0000-0002-8420-7089

İbrahim Turna 0000-0003-4408-1327

Publication Date December 27, 2019
Acceptance Date December 18, 2019
Published in Issue Year 2019

Cite

APA Güney, D., Seyis, E., Atar, F., Bayraktar, A., et al. (2019). Effects of some nitrogen-fixing plants on seedling growth of scotch pine. Turkish Journal of Forestry, 20(4), 284-289. https://doi.org/10.18182/tjf.579386
AMA Güney D, Seyis E, Atar F, Bayraktar A, Turna İ. Effects of some nitrogen-fixing plants on seedling growth of scotch pine. Turkish Journal of Forestry. December 2019;20(4):284-289. doi:10.18182/tjf.579386
Chicago Güney, Deniz, Erhan Seyis, Fahrettin Atar, Ali Bayraktar, and İbrahim Turna. “Effects of Some Nitrogen-Fixing Plants on Seedling Growth of Scotch Pine”. Turkish Journal of Forestry 20, no. 4 (December 2019): 284-89. https://doi.org/10.18182/tjf.579386.
EndNote Güney D, Seyis E, Atar F, Bayraktar A, Turna İ (December 1, 2019) Effects of some nitrogen-fixing plants on seedling growth of scotch pine. Turkish Journal of Forestry 20 4 284–289.
IEEE D. Güney, E. Seyis, F. Atar, A. Bayraktar, and İ. Turna, “Effects of some nitrogen-fixing plants on seedling growth of scotch pine”, Turkish Journal of Forestry, vol. 20, no. 4, pp. 284–289, 2019, doi: 10.18182/tjf.579386.
ISNAD Güney, Deniz et al. “Effects of Some Nitrogen-Fixing Plants on Seedling Growth of Scotch Pine”. Turkish Journal of Forestry 20/4 (December 2019), 284-289. https://doi.org/10.18182/tjf.579386.
JAMA Güney D, Seyis E, Atar F, Bayraktar A, Turna İ. Effects of some nitrogen-fixing plants on seedling growth of scotch pine. Turkish Journal of Forestry. 2019;20:284–289.
MLA Güney, Deniz et al. “Effects of Some Nitrogen-Fixing Plants on Seedling Growth of Scotch Pine”. Turkish Journal of Forestry, vol. 20, no. 4, 2019, pp. 284-9, doi:10.18182/tjf.579386.
Vancouver Güney D, Seyis E, Atar F, Bayraktar A, Turna İ. Effects of some nitrogen-fixing plants on seedling growth of scotch pine. Turkish Journal of Forestry. 2019;20(4):284-9.