Research Article
BibTex RIS Cite

Evaluation of landscape connectivity between protected areas using pinch points

Year 2021, , 331 - 341, 30.09.2021
https://doi.org/10.18182/tjf.885993

Abstract

Protected areas, where the interaction of human and nature gain significant ecological, biological, cultural and scenic values and determining character over time, is also of vital importance in maintaining this interaction and protecting its integrity. The protected areas in Bursa, contribute to the landscape heterogeneity of the city and significantly support biological diversity. In this study, the protected areas in Bursa and the landscape connectivity between them and the effectiveness of protected areas related to land use in supporting landscape connectivity were evaluated. For this, the 2018 land use/land cover map was used and corridor connections were determined using the least-cost-path and Euclidean distance methods. The pinch points between these corridors were estimated using circuit theory. The pair of protected areas with the highest effective resistance (37.52) has been nature park and wildlife protection area. Least effective resistance value was calculated between seed stand and national park. The maximum value of the pinch points between all protected areas was calculated as 0.10. The pinch points between protected areas in the landscape represented the areas where movement between protected areas would be directed. Even a small loss of space at pinch points can compromise the connection between protected areas disproportionately. Therefore, determining the pinch points in the landscape has a very important place in planning studies.

Thanks

This study was presented as abstract at 10th International Ecology Symposium on 26-28 November 2020, held by Bursa Technical University.

References

  • Başkent, E., Jordan, G., 2011. Characterizing spatial structure of forest landscapes. Canadian Journal of Forest Research, 25, 1830-1849. doi:10.1139/x95-198
  • Carroll, C., McRae, B.H., Brookes, A., 2012. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of Gray wolf populations in Western North America. Conservation Biology, 26(1): 78-87. doi: 10.1111/j.1523-1739.2011.01753.x.
  • Castillo, L.S., Correa Ayram, C. A., Matallana Tobón, C.L., Corzo, G., Areiza, A., González-M. R., Serrano, F., Chalán Briceño, L. C., Sánchez Puertas, F, S., More, A., Franco, O., Bloomfield, H., Aguilera Orrury, V. L., Rivadeneira Canedo C., Morón-Zambrano V., Yerena E., Papadakis J., Cárdenas, J. J., Golden Kroner, R. E., Godínez-Gómez, O., 2020. Connectivity of protected areas: Effect of human pressure and subnational contributions in the ecoregions of tropical Andean Countries. Land, 9(8): 239. doi:10.3390/land9080239
  • Covich, A.P., 1976. Analyzing shapes of foraging areas: Some ecological and economic theories. Annual Review of Ecology and Systematics, 7(1): 235-257. doi:10.1146/annurev.es. 07.110176.001315
  • ÇŞİM, 2019. Bursa İli 2018 Yılı Çevre Durum Raporu. Retrieved from, bursa_2018_cdr_son-20190726135329.pdf (csb.gov.tr) , Accessed: 18.8.2020.
  • Cushman, S. A., Landguth, E., 2010. Scale dependent inference in landscape genetics. Landscape Ecology, 25, 967-979. doi:10.1007/s10980-010-9467-0
  • Cushman, S.A., McKelvey, K. S., Hayden, J., Schwartz, M. K., 2006. Gene flow in complex landscapes: Testing multiple hypotheses with causal modelling. The American Naturalist, 168(4): 486-499. doi:10.1086/506976
  • D’Elia, J., Brandt, J., Burnett, L. J., Haig, S. M., Hollenbeck, J., Kirkland, S., Marcot, B. C., Punzalan, A., West, C. J., Williams-Claussen, T., Wolstenholme, R., Young, R., 2020. Applying circuit theory and landscape linkage maps to reintroduction planning for California Condors. PLOS ONE, 14(12): e0226491. doi:10.1371/journal.pone.0226491
  • DeFries, R., Hansen, A., Newton, A. C., Hansen, M. C., 2005. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecological Applications, 15(1): 19-26. doi:https://doi.org/10.1890/03-5258
  • Dickson, B.G., Albano, C.M., Anantharaman, R., Beier, P., Fargione, J., Graves, T. A., Gray, M. E., Hall, K. R., Lawler, J. J., Leonard, P. B., Littlefield, C. E., McClure, M. L., Novembre, J., Schloss, C. A., Schumaker, N. H., Shah, V. B., Theobald, D. M., 2019. Circuit-theory applications to connectivity science and conservation. Conservation Biology, 33(2): 239-249. doi: 10.1111/cobi.13230
  • Du, A., Xu, W., Xiao, Y., Cui, T., Song, T., Ouyang, Z., 2020. Evaluation of prioritized natural landscape conservation areas for national park planning in China. Sustainability, 12(5): 1840. doi: 10.3390/su12051840 Dyer, R. J., Nason, J. D., Garrick, R.C., 2010. Landscape modelling of gene flow: Improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol, 19(17): 3746-3759. doi:10.1111/j.1365-294X.2010.04748.x
  • Ervin, J., Mulongoy, K., Lawrence, K., Game, E., Sheppard, D., Bridgewater, P., Bennett, G., Gidda, S. B., Bos, P., 2010. Making protected areas relevant: A guide to integrating protected areas into wider landscapes, seascapes and sectoral plans and strategies. Retrieved from Montreal, Quebec, Canada: https://library.sprep.org/content/making-protected-areas-relevant-guide-integrating-protected-areas-wider-landscapes, Accessed: 19.08.2020.
  • Fletcher, R.J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Haddad, N.M., 2018. Is habitat fragmentation good for biodiversity? Biological Conservation, 226, 9-15. doi:10.1016/j.biocon.2018.07.022
  • Forman, R.T.T., 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge; New York: Cambridge University Press.
  • Forman, R. T. T., Godron, M., 1986. Landscape Ecology. New York: Wiley.
  • Fraser, K.C., Davies, K.T.A., Davy, C.M., Ford, A.T., Flockhart, D. T.T., Martins, E.G., 2018. Tracking the conservation promise of movement ecology. Frontiers in Ecology and Evolution, 6(150): 1-8. doi:10.3389/fevo.2018.00150
  • Geldmann, J., Manica, A., Burgess, N.D., Coad, L., Balmford, A., 2019. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proceedings of the National Academy of Sciences, 116(46): 23209-23215. doi:10.1073/pnas.1908221116
  • Gray, C.L., Hill, S. L. .L., Newbold, T., Hudson, L. N., Börger, L., Contu, S., Hoskins, A. J., Ferrier, S., Purvis, A., Scharlemann, J.P.W., 2016. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 7(1): 1-7. 12306. doi:10.1038/ncomms12306
  • Gustafson, E.J., Crow, T. R., 1994. Modelling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism. Landscape Ecology, 9(4): 237-248. doi:10.1007/BF00129235
  • Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W, F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls A. O., Orrock, J. L., Song, D. X., Townshend, J. R., 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2): e1500052. doi:10.1126/sciadv.1500052
  • Hanks, E.M., Hooten, M., 2013. Circuit theory and model-based inference for landscape connectivity. Journal of the American Statistical Association, 108(501): 22-33. doi:10.1080/01621459.2012.724647
  • Jalkanen, J., Toivonen, T., Moilanen, A., 2020. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landscape Ecology, 35(2): 353-371. doi:10.1007/s10980-019-00950-4
  • Jones, A., 2015. Mapping Habitat Connectivity for Greater Sage-Grouse in Oregon's Sage-Grouse Conservation Partnership (SageCon) Assessment Area. Retrieved from (PDF) Mapping Habitat Connectivity for Greater Sage-Grouse in Oregon's Sage-Grouse Conservation Partnership (SageCon) Assessment Area (researchgate.net), Accessed: 18.08.2020.
  • Khosravi, R., Hemami, M.-R., Cushman, S. A., 2018. Multispecies assessment of core areas and connectivity of desert carnivores in central Iran. Diversity and Distributions, 24(2): 193-207. doi:https://doi.org/10.1111/ddi.12672
  • Kindlmann, P., Burel, F., 2008. Connectivity measures: A review. Landscape Ecology, 23(8): 879-890. doi:10.1007/s10980-008-9245-4
  • Koeppl, J.W., Slade, N.A., Hoffmann, R.S., 1975. A bivariate home range model with possible application to ethological data analysis. Journal of Mammalogy, 56(1): 81-90. doi:10.2307/1379608
  • Kuphaldt, T.R., 2006. Lessons in Electric Circuits, Volume I – DC. United Kingdom: Koros Press.
  • Laurance, W. F., Yensen, E., 1991. Predicting the impacts of edge effects in fragmented habitats. Biological Conservation, 55(1): 77-92. doi:https://doi.org/10.1016/0006-3207(91)90006-U
  • Liu, C., Newell, G., White, M., Bennett, A.F., 2018. Identifying wildlife corridors for the restoration of regional habitat connectivity: A multispecies approach and comparison of resistance surfaces. PLOS ONE, 13(11): 1-14. doi:10.1371/journal.pone.0206071
  • Lookingbill, T.R., Gardner, R.H., Ferrari, J.R., Keller, C.E., 2010. Combining a dispersal model with network theory to assess habitat connectivity. Ecological Applications, 20(2): 427-441. doi:https://doi.org/10.1890/09-0073.1
  • Marrotte, R.R., Bowman, J., Brown, M.G.C., Cordes, C., Morris, K. Y., Prentice, M.B., Wilson, P.J., 2017. Multi-species genetic connectivity in a terrestrial habitat network. Movement Ecology, 5: 21. 1-11. doi:10.1186/s40462-017-0112-2
  • McRae, B.H., 2006. Isolation by resistance. Evolution, 60(8): 1551-1561. doi:https://doi.org/10.1111/j.0014-3820.2006. tb00500.x
  • McRae, B.H., 2012. Pinchpoint Mapper Connectivity Analysis Software (Version Version 2.0). The Nature Conservancy, Seattle WA: The Nature Conservancy. Retrieved from http://www.circuitscape.org/linkagemapper, Accessed: 20.08.2020.
  • McRae, B.H., Beier, P., 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50): 19885-19890. doi:10.1073/pnas.0706568104
  • McRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10): 2712-2724. doi:10.1890/07-1861.1
  • McRae, B.H., Kavanagh, D.M., 2011. Linkage Mapper Connectivity Analysis Software. Seattle, Washington, United States of America: The Nature Conservancy. Retrieved from http://www.circuitscape.org/linkagemapper, Accessed: 20.08.2020.
  • McRae, B.H., Hall, S.A., Beier, P., Theobald, D.M., 2012. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. Plos One, 7(12): 1-12. doi:10.1371/journal.pone.0052604
  • McRae, B. H., Shah, V. B., & Mohapatra, T. 2014. Circuitscape 4 User Guide. Retrieved from: User Guide Circuitscape.jl Documentation, Accessed: 18 08 2020.
  • McRae, B. H., Kavanagh, D. M. 2017. User Guide: Linkage Pathways Tool of the Linkage Mapper Toolbox Version 2.0. Retrieved from Linkage Mapper | Linkage Mapper, Accessed: 18.08.2020.
  • Owen-Smith, N., Fryxell, J.M., Merrill, E.H., 2010. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1550): 2267-2278. doi:10.1098/rstb.2010.0095
  • Özcan, A., Aytaş, İ., 2020. Peyzaj direnç değişimlerinin ekolojik bağlantılar üzerine etkileri: Çankırı örneği. Bartın Orman Fakültesi Dergisi, 22(3): 979-992. doi:10.24011/barofd.752271
  • Rayfield, B., Fortin, M.J., Fall, A., 2011. Connectivity for conservation: A framework to classify network measures. Ecology, 92(4): 847-858. doi:https://doi.org/10.1890/09-2190.1
  • Rempel, R., 2015. Spatial Ecology Program-Analysis Tools/Patch Analyst. Retrieved from: Landscape Metrics - Overview (arcgis.com), Accessed: 20.08.2020.
  • Rudnick, D., Ryan, S., Beier, P., Cushman, S. A., Dieffenbach, F., Epps, C. W., Gerber, L. R., Hartter, J., Jenness, J. S., Kinthsch, J., Merenlender, A. M., Perkl, R. M., Preziosi, D. V., Trombulack, S.C., 2012. The Role of landscape connectivity in planning and implementing conservation and restoration priorities (16). Retrieved from Washington D.C.: https://www.fs.usda.gov/treesearch/pubs/42229, Accessed: 20.08.2020.
  • Saura, S., Pascual-Hortal, L., 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2): 91-103. doi:https://doi.org/10.1016/j.landurbplan.2007.03.005
  • Saura, S., Rubio, L., 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography, 33(3): 523-537. doi:https://doi.org/10.1111/j.1600-0587.2009.05760.x
  • Sezen, J., 2017. Türkiye ve dünyada korunan alanlara yönelik çevre bilincinin önemi. Journal of International Scientific Researches, 2, 165-177. doi:10.21733/ibad.2116
  • Stewart, F.E.C., Darlington, S., Volpe, J. P., McAdie, M., Fisher, J. T., 2019. Corridors best facilitate functional connectivity across a protected area network. Scientific Reports, 9(1): 10852. doi:10.1038/s41598-019-47067-x
  • Taylor, P. D., Fahrig, L., Henein, K., Merriam, G., 1993. Connectivity is a vital element of landscape structure. Oikos, 68, 571-573.
  • Tischendorf, L., Fahrig, L., 2000. On the usage and measurement of landscape connectivity. Oikos, 90(1): 7-19. doi:10.1034/j.1600-0706.2000.900102.x
  • Urban, D. L., Minor, E.S., Treml, E.A., Schick, R.S., 2009. Graph models of habitat mosaics. Ecology Letters, 12(3): 260-273. doi:https://doi.org/10.1111/j.1461-0248.2008.01271.x
  • Watson, J.E.M., Dudley, N., Segan, D.B., Hockings, M., 2014. The performance and potential of protected areas. Nature, 515(7525): 67-73. doi:10.1038/nature13947
  • Xun, B., Yu, D., Liu, Y., 2014. Habitat connectivity analysis for conservation implications in an urban area. Acta Ecologica Sinica, 34(1): 44-52. doi:https://doi.org/10.1016/ j.chnaes.2013.11.006
  • Zeller, K.A., McGarigal, K., Whiteley, A.R., 2012. Estimating landscape resistance to movement: A review. Landscape Ecology, 27(6): 777-797. doi:10.1007/s10980-012-9737-0
  • Zemanova, M.A., Perotto-Baldivieso, H.L., Dickins, E.L., Gill, A. B., Leonard, J.P., Wester, D.B., 2017. Impact of deforestation on habitat connectivity thresholds for large carnivores in tropical forests. Ecological Processes, 6(1): 21. 1-11. doi:10.1186/s13717-017-0089-1

Korunan alanlar arasındaki peyzaj bağlantılılığının düğüm noktaları kullanılarak değerlendirilmesi

Year 2021, , 331 - 341, 30.09.2021
https://doi.org/10.18182/tjf.885993

Abstract

Zaman içerisinde insan ve doğa etkileşiminin önemli derecede ekolojik, biyolojik, kültürel ve görsel değerler ile belirleyici karakter kazandırdığı alanlar olan korunan alanlar, aynı zamanda bu etkileşimin sürdürülmesi ve bütünlüğünün korunması konusunda hayati önem taşımaktadır. Bursa sınırları içerisinde yer alan korunan alanlar, kentin peyzaj heterojenitesine katkıda bulunarak biyolojik çeşitliliği önemli derecede desteklemektedir. Bu çalışmada, Bursa kenti sınırları içerisinde yer alan korunan alanlar ile bunlar arasındaki peyzaj bağlantılılığı ve arazi kullanımlarıyla ilişkili korunan alanların peyzaj bağlantılılığını desteklemedeki etkinliği değerlendirilmiştir. Yöntem için 2018 yılı arazi örtüsü/arazi kullanımı haritasından yararlanılmış ve least-cost-path ile euclidean distance yöntemleri kullanılarak koridor bağlantıları belirlenmiştir. Bu koridorlar arasındaki düğüm noktaları (daralmalar/darboğazlar) devre teorisi kullanılarak tahmin edilmiştir. Düğüm noktalarının gectiği korunan alanlar arasındaki en etkin direnç 37.52 değeriyle tabiat parkı ve yaban hayatı koruma alanı arasında gerçekleşmiştir. En az etkinliğe sahip direnç değeri ise 0.01 ile tohum meşceresi ve milli park arasında hesaplanmıştır. Bursa peyzajında bulunan korunan alanlar arasındaki düğüm noktaları, korunan alanlar arasındaki hareketin yönlendirileceği alanları temsil etmiştir. Düğüm noktalarındaki küçük bir alan kaybı, bile orantısız bir şekilde korunan alanlar arasındaki bağlantıyı tehlikeye atabilir. Bu nedenle, peyzajdaki düğüm noktalarının belirlenmesi planlama çalışmalarında oldukça önemli bir yere sahiptir.

References

  • Başkent, E., Jordan, G., 2011. Characterizing spatial structure of forest landscapes. Canadian Journal of Forest Research, 25, 1830-1849. doi:10.1139/x95-198
  • Carroll, C., McRae, B.H., Brookes, A., 2012. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of Gray wolf populations in Western North America. Conservation Biology, 26(1): 78-87. doi: 10.1111/j.1523-1739.2011.01753.x.
  • Castillo, L.S., Correa Ayram, C. A., Matallana Tobón, C.L., Corzo, G., Areiza, A., González-M. R., Serrano, F., Chalán Briceño, L. C., Sánchez Puertas, F, S., More, A., Franco, O., Bloomfield, H., Aguilera Orrury, V. L., Rivadeneira Canedo C., Morón-Zambrano V., Yerena E., Papadakis J., Cárdenas, J. J., Golden Kroner, R. E., Godínez-Gómez, O., 2020. Connectivity of protected areas: Effect of human pressure and subnational contributions in the ecoregions of tropical Andean Countries. Land, 9(8): 239. doi:10.3390/land9080239
  • Covich, A.P., 1976. Analyzing shapes of foraging areas: Some ecological and economic theories. Annual Review of Ecology and Systematics, 7(1): 235-257. doi:10.1146/annurev.es. 07.110176.001315
  • ÇŞİM, 2019. Bursa İli 2018 Yılı Çevre Durum Raporu. Retrieved from, bursa_2018_cdr_son-20190726135329.pdf (csb.gov.tr) , Accessed: 18.8.2020.
  • Cushman, S. A., Landguth, E., 2010. Scale dependent inference in landscape genetics. Landscape Ecology, 25, 967-979. doi:10.1007/s10980-010-9467-0
  • Cushman, S.A., McKelvey, K. S., Hayden, J., Schwartz, M. K., 2006. Gene flow in complex landscapes: Testing multiple hypotheses with causal modelling. The American Naturalist, 168(4): 486-499. doi:10.1086/506976
  • D’Elia, J., Brandt, J., Burnett, L. J., Haig, S. M., Hollenbeck, J., Kirkland, S., Marcot, B. C., Punzalan, A., West, C. J., Williams-Claussen, T., Wolstenholme, R., Young, R., 2020. Applying circuit theory and landscape linkage maps to reintroduction planning for California Condors. PLOS ONE, 14(12): e0226491. doi:10.1371/journal.pone.0226491
  • DeFries, R., Hansen, A., Newton, A. C., Hansen, M. C., 2005. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecological Applications, 15(1): 19-26. doi:https://doi.org/10.1890/03-5258
  • Dickson, B.G., Albano, C.M., Anantharaman, R., Beier, P., Fargione, J., Graves, T. A., Gray, M. E., Hall, K. R., Lawler, J. J., Leonard, P. B., Littlefield, C. E., McClure, M. L., Novembre, J., Schloss, C. A., Schumaker, N. H., Shah, V. B., Theobald, D. M., 2019. Circuit-theory applications to connectivity science and conservation. Conservation Biology, 33(2): 239-249. doi: 10.1111/cobi.13230
  • Du, A., Xu, W., Xiao, Y., Cui, T., Song, T., Ouyang, Z., 2020. Evaluation of prioritized natural landscape conservation areas for national park planning in China. Sustainability, 12(5): 1840. doi: 10.3390/su12051840 Dyer, R. J., Nason, J. D., Garrick, R.C., 2010. Landscape modelling of gene flow: Improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol, 19(17): 3746-3759. doi:10.1111/j.1365-294X.2010.04748.x
  • Ervin, J., Mulongoy, K., Lawrence, K., Game, E., Sheppard, D., Bridgewater, P., Bennett, G., Gidda, S. B., Bos, P., 2010. Making protected areas relevant: A guide to integrating protected areas into wider landscapes, seascapes and sectoral plans and strategies. Retrieved from Montreal, Quebec, Canada: https://library.sprep.org/content/making-protected-areas-relevant-guide-integrating-protected-areas-wider-landscapes, Accessed: 19.08.2020.
  • Fletcher, R.J., Didham, R. K., Banks-Leite, C., Barlow, J., Ewers, R. M., Rosindell, J., Haddad, N.M., 2018. Is habitat fragmentation good for biodiversity? Biological Conservation, 226, 9-15. doi:10.1016/j.biocon.2018.07.022
  • Forman, R.T.T., 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge; New York: Cambridge University Press.
  • Forman, R. T. T., Godron, M., 1986. Landscape Ecology. New York: Wiley.
  • Fraser, K.C., Davies, K.T.A., Davy, C.M., Ford, A.T., Flockhart, D. T.T., Martins, E.G., 2018. Tracking the conservation promise of movement ecology. Frontiers in Ecology and Evolution, 6(150): 1-8. doi:10.3389/fevo.2018.00150
  • Geldmann, J., Manica, A., Burgess, N.D., Coad, L., Balmford, A., 2019. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proceedings of the National Academy of Sciences, 116(46): 23209-23215. doi:10.1073/pnas.1908221116
  • Gray, C.L., Hill, S. L. .L., Newbold, T., Hudson, L. N., Börger, L., Contu, S., Hoskins, A. J., Ferrier, S., Purvis, A., Scharlemann, J.P.W., 2016. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 7(1): 1-7. 12306. doi:10.1038/ncomms12306
  • Gustafson, E.J., Crow, T. R., 1994. Modelling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism. Landscape Ecology, 9(4): 237-248. doi:10.1007/BF00129235
  • Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W, F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls A. O., Orrock, J. L., Song, D. X., Townshend, J. R., 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2): e1500052. doi:10.1126/sciadv.1500052
  • Hanks, E.M., Hooten, M., 2013. Circuit theory and model-based inference for landscape connectivity. Journal of the American Statistical Association, 108(501): 22-33. doi:10.1080/01621459.2012.724647
  • Jalkanen, J., Toivonen, T., Moilanen, A., 2020. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landscape Ecology, 35(2): 353-371. doi:10.1007/s10980-019-00950-4
  • Jones, A., 2015. Mapping Habitat Connectivity for Greater Sage-Grouse in Oregon's Sage-Grouse Conservation Partnership (SageCon) Assessment Area. Retrieved from (PDF) Mapping Habitat Connectivity for Greater Sage-Grouse in Oregon's Sage-Grouse Conservation Partnership (SageCon) Assessment Area (researchgate.net), Accessed: 18.08.2020.
  • Khosravi, R., Hemami, M.-R., Cushman, S. A., 2018. Multispecies assessment of core areas and connectivity of desert carnivores in central Iran. Diversity and Distributions, 24(2): 193-207. doi:https://doi.org/10.1111/ddi.12672
  • Kindlmann, P., Burel, F., 2008. Connectivity measures: A review. Landscape Ecology, 23(8): 879-890. doi:10.1007/s10980-008-9245-4
  • Koeppl, J.W., Slade, N.A., Hoffmann, R.S., 1975. A bivariate home range model with possible application to ethological data analysis. Journal of Mammalogy, 56(1): 81-90. doi:10.2307/1379608
  • Kuphaldt, T.R., 2006. Lessons in Electric Circuits, Volume I – DC. United Kingdom: Koros Press.
  • Laurance, W. F., Yensen, E., 1991. Predicting the impacts of edge effects in fragmented habitats. Biological Conservation, 55(1): 77-92. doi:https://doi.org/10.1016/0006-3207(91)90006-U
  • Liu, C., Newell, G., White, M., Bennett, A.F., 2018. Identifying wildlife corridors for the restoration of regional habitat connectivity: A multispecies approach and comparison of resistance surfaces. PLOS ONE, 13(11): 1-14. doi:10.1371/journal.pone.0206071
  • Lookingbill, T.R., Gardner, R.H., Ferrari, J.R., Keller, C.E., 2010. Combining a dispersal model with network theory to assess habitat connectivity. Ecological Applications, 20(2): 427-441. doi:https://doi.org/10.1890/09-0073.1
  • Marrotte, R.R., Bowman, J., Brown, M.G.C., Cordes, C., Morris, K. Y., Prentice, M.B., Wilson, P.J., 2017. Multi-species genetic connectivity in a terrestrial habitat network. Movement Ecology, 5: 21. 1-11. doi:10.1186/s40462-017-0112-2
  • McRae, B.H., 2006. Isolation by resistance. Evolution, 60(8): 1551-1561. doi:https://doi.org/10.1111/j.0014-3820.2006. tb00500.x
  • McRae, B.H., 2012. Pinchpoint Mapper Connectivity Analysis Software (Version Version 2.0). The Nature Conservancy, Seattle WA: The Nature Conservancy. Retrieved from http://www.circuitscape.org/linkagemapper, Accessed: 20.08.2020.
  • McRae, B.H., Beier, P., 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50): 19885-19890. doi:10.1073/pnas.0706568104
  • McRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10): 2712-2724. doi:10.1890/07-1861.1
  • McRae, B.H., Kavanagh, D.M., 2011. Linkage Mapper Connectivity Analysis Software. Seattle, Washington, United States of America: The Nature Conservancy. Retrieved from http://www.circuitscape.org/linkagemapper, Accessed: 20.08.2020.
  • McRae, B.H., Hall, S.A., Beier, P., Theobald, D.M., 2012. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. Plos One, 7(12): 1-12. doi:10.1371/journal.pone.0052604
  • McRae, B. H., Shah, V. B., & Mohapatra, T. 2014. Circuitscape 4 User Guide. Retrieved from: User Guide Circuitscape.jl Documentation, Accessed: 18 08 2020.
  • McRae, B. H., Kavanagh, D. M. 2017. User Guide: Linkage Pathways Tool of the Linkage Mapper Toolbox Version 2.0. Retrieved from Linkage Mapper | Linkage Mapper, Accessed: 18.08.2020.
  • Owen-Smith, N., Fryxell, J.M., Merrill, E.H., 2010. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1550): 2267-2278. doi:10.1098/rstb.2010.0095
  • Özcan, A., Aytaş, İ., 2020. Peyzaj direnç değişimlerinin ekolojik bağlantılar üzerine etkileri: Çankırı örneği. Bartın Orman Fakültesi Dergisi, 22(3): 979-992. doi:10.24011/barofd.752271
  • Rayfield, B., Fortin, M.J., Fall, A., 2011. Connectivity for conservation: A framework to classify network measures. Ecology, 92(4): 847-858. doi:https://doi.org/10.1890/09-2190.1
  • Rempel, R., 2015. Spatial Ecology Program-Analysis Tools/Patch Analyst. Retrieved from: Landscape Metrics - Overview (arcgis.com), Accessed: 20.08.2020.
  • Rudnick, D., Ryan, S., Beier, P., Cushman, S. A., Dieffenbach, F., Epps, C. W., Gerber, L. R., Hartter, J., Jenness, J. S., Kinthsch, J., Merenlender, A. M., Perkl, R. M., Preziosi, D. V., Trombulack, S.C., 2012. The Role of landscape connectivity in planning and implementing conservation and restoration priorities (16). Retrieved from Washington D.C.: https://www.fs.usda.gov/treesearch/pubs/42229, Accessed: 20.08.2020.
  • Saura, S., Pascual-Hortal, L., 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2): 91-103. doi:https://doi.org/10.1016/j.landurbplan.2007.03.005
  • Saura, S., Rubio, L., 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography, 33(3): 523-537. doi:https://doi.org/10.1111/j.1600-0587.2009.05760.x
  • Sezen, J., 2017. Türkiye ve dünyada korunan alanlara yönelik çevre bilincinin önemi. Journal of International Scientific Researches, 2, 165-177. doi:10.21733/ibad.2116
  • Stewart, F.E.C., Darlington, S., Volpe, J. P., McAdie, M., Fisher, J. T., 2019. Corridors best facilitate functional connectivity across a protected area network. Scientific Reports, 9(1): 10852. doi:10.1038/s41598-019-47067-x
  • Taylor, P. D., Fahrig, L., Henein, K., Merriam, G., 1993. Connectivity is a vital element of landscape structure. Oikos, 68, 571-573.
  • Tischendorf, L., Fahrig, L., 2000. On the usage and measurement of landscape connectivity. Oikos, 90(1): 7-19. doi:10.1034/j.1600-0706.2000.900102.x
  • Urban, D. L., Minor, E.S., Treml, E.A., Schick, R.S., 2009. Graph models of habitat mosaics. Ecology Letters, 12(3): 260-273. doi:https://doi.org/10.1111/j.1461-0248.2008.01271.x
  • Watson, J.E.M., Dudley, N., Segan, D.B., Hockings, M., 2014. The performance and potential of protected areas. Nature, 515(7525): 67-73. doi:10.1038/nature13947
  • Xun, B., Yu, D., Liu, Y., 2014. Habitat connectivity analysis for conservation implications in an urban area. Acta Ecologica Sinica, 34(1): 44-52. doi:https://doi.org/10.1016/ j.chnaes.2013.11.006
  • Zeller, K.A., McGarigal, K., Whiteley, A.R., 2012. Estimating landscape resistance to movement: A review. Landscape Ecology, 27(6): 777-797. doi:10.1007/s10980-012-9737-0
  • Zemanova, M.A., Perotto-Baldivieso, H.L., Dickins, E.L., Gill, A. B., Leonard, J.P., Wester, D.B., 2017. Impact of deforestation on habitat connectivity thresholds for large carnivores in tropical forests. Ecological Processes, 6(1): 21. 1-11. doi:10.1186/s13717-017-0089-1
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Huriye Simten Sütünç 0000-0002-0149-9953

Publication Date September 30, 2021
Acceptance Date July 12, 2021
Published in Issue Year 2021

Cite

APA Sütünç, H. S. (2021). Evaluation of landscape connectivity between protected areas using pinch points. Turkish Journal of Forestry, 22(3), 331-341. https://doi.org/10.18182/tjf.885993
AMA Sütünç HS. Evaluation of landscape connectivity between protected areas using pinch points. Turkish Journal of Forestry. September 2021;22(3):331-341. doi:10.18182/tjf.885993
Chicago Sütünç, Huriye Simten. “Evaluation of Landscape Connectivity Between Protected Areas Using Pinch Points”. Turkish Journal of Forestry 22, no. 3 (September 2021): 331-41. https://doi.org/10.18182/tjf.885993.
EndNote Sütünç HS (September 1, 2021) Evaluation of landscape connectivity between protected areas using pinch points. Turkish Journal of Forestry 22 3 331–341.
IEEE H. S. Sütünç, “Evaluation of landscape connectivity between protected areas using pinch points”, Turkish Journal of Forestry, vol. 22, no. 3, pp. 331–341, 2021, doi: 10.18182/tjf.885993.
ISNAD Sütünç, Huriye Simten. “Evaluation of Landscape Connectivity Between Protected Areas Using Pinch Points”. Turkish Journal of Forestry 22/3 (September 2021), 331-341. https://doi.org/10.18182/tjf.885993.
JAMA Sütünç HS. Evaluation of landscape connectivity between protected areas using pinch points. Turkish Journal of Forestry. 2021;22:331–341.
MLA Sütünç, Huriye Simten. “Evaluation of Landscape Connectivity Between Protected Areas Using Pinch Points”. Turkish Journal of Forestry, vol. 22, no. 3, 2021, pp. 331-4, doi:10.18182/tjf.885993.
Vancouver Sütünç HS. Evaluation of landscape connectivity between protected areas using pinch points. Turkish Journal of Forestry. 2021;22(3):331-4.