PDF Zotero Mendeley EndNote BibTex Cite

-

Year 2015, Volume 16, Issue 2, 203 - 219, 09.11.2015
https://doi.org/10.18182/tjf.09718

Abstract

-

References

  • Abe, K., Iwamoto, S., Yano, H., 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. biomacromolecules, 8(10): 3276-8.
  • Adomavičiūtė, E., Milašius, R., Žemaitaitis, A., Bendoraitienė, J., Leskovšek, M., Demšar, A., 2009. Methods of forming nanofibres from bicomponent pva/cationic starch solution, Fibres & Textiles in Eastern Europe, 3(74): 29-33.
  • Ahola, S., Österberg, M., Laine, J., 2008. Cellulose Nanofibrils Epichlorohydrin Studied by QCM-D and Application as a Paper Strength Additive, Cellulose, 15(2):303-14.
  • Alemdar, A., Sain, M., 2008. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties, Compos. Sci. Technol., 68(2):557-65.
  • Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues wheat straw and soy hulls. Bioresour. Technol., 99(6):1664-71.
  • Andresen, M., Stenius, P., 2007. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose, J. Disper. Sci. Technol., 28(6):837-44.
  • Andresen, M., Stenstad, P., Moretro, T., Langsrud, S., Syverud, K., Johansson, L.S., Stenius, P., 2007. Non leaching antimicrobial films prepared from surface- modified microfibrillated cellulose, Biomacromolecules, 8(7):2149-55.
  • Anjerfors, M., 2012. Microfibrillated cellulose: energy- efficient preparation techniques and key properties, (licentiate thesis), Innventia AB, Stockholm, Sweden.
  • Ankerfors, M., Lindström, T., Henriksson, G., 2009. Method for the manufacture of microfibrillated cellulose, US Pat. 20090221812 A1.
  • Anna, S.J., Azizi Samir, M.A.S., Berglund, L.A., 2007. Biomimetic polysaccharide nanocomposites of high cellulose and Biomacromolecules, 8(8):2556-63. high toughness,
  • Anna J.S., Azizi Samir, M.A.S., Berglund, L.A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native nanofibrils, Adv. Mater., 20(7):1263-9.
  • Anonim, 2005. Nanomaterials production 2002-2016: Production volumes, revenues and end user market demand. http://www.researchandmarkets.com/research /5b0347/nanomaterials_pro. Erişim: 15.10.2014. Nano-fibres Anonim, 2006. for filter materials. http://www.scribd.com/doc/30357529/Nano-Fibres-for Filter-Materials. Erişim: 15.10.2014.
  • Anonim, 2007. First annual nanotechnology safety for success http://ec.europa.eu/health/nanotechnology/events/ev_20 071025_en.htm. Erişim: 15.10.2014. October 2007.
  • Anonim, 2008. Nanomaterials state of the market Q3 2008: broad luxresearchinc.com/research/document_excerpt/3735. Erişim: 15.10.2014. impact https://portal.
  • Anonim, 2011. Global nanomaterials opportunity and emerging trends. http://www.lucintel.com/LucintelBrief/ GlobalNanomaterialsopportunity-Final.pdf. 15.10.2014. Erişim:
  • Anonim, 2013a. Nanoteknoloji nedir? Faydaları ve kullanım alanları nanoteknoloji-nedir-faydalari-ve-kullanim-alanlari- nelerdir. Erişim: 15.10.2014.
  • Anonim, 2013b. Circot, Icar, Central Institute for Research on Cotton Technology. http://www.circot.res.in. Erişim: 15.10.2014.
  • Anonim, 2013c. Method of preparing microfibrillar polysaccharide. EP1896508A1. Erişim: 15.10.2014.
  • Anonim,2013d.http://www.researchandmarkets.com/reports /2271936/the_global_market_for_nanocellulose_to_201 7. Erişim:
  • Anonim, 2013e.Global market for nanofibers (Alumina, and polymer, http://en.wikipedia.org/wiki/Nanocellulose. 15.10.2014. cellulose) to 2017. Erişim: Anonim, 2013f. NanoHeal.
  • http://www.pfi.no/New
  • Biomaterials/Projects/NanoHeal. Erişim: 15.10.2014.
  • Anonim, 2013g. Why wood pulp is world’s new wonder material. mg21528786- wonder-material. Erişim: 15.10.2014.
  • Anonim, 2013h. Yaşlanmayı geciktiren madde keşfedildi http://fwmail.net/bilim/yaslanmayi-geciktiren-madde- kesfedildi/. Erişim: 15.10.2014.
  • Araki, J., Wada, M., Kuga, S., Okano, T., 1998. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloid Surface A, 142(1):75-82.
  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., Wagberg, L., 2009. Nanoscale cellulose films with different crystallinities and mesostructures their surface properties and ınteraction with water, Langmuir, 25(13): 7675-85.
  • Aulin, C., Lindström, T., 2011. Biopolymer coatings for paper and paperboard., ın: biopolymers-new materials for sustainable films and coatings, ed: plackett, d., john wiley and sons ltd, UK, pp. 255-76.
  • Aydemir, D., 2012. Selülozik nano/makro partiküllerle desteklenmiş kompozitlerinin köpüklendirilmesi ve karakterizasyonu, (doktora tezi), Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Bartın. maleik anhidrit (sma)
  • Balzani, V., 2008. Nanoscience and nanotechnology, pure appl. Chem., 80(8):1631-50. Banker, G.S., Kumar, V., 1995. Microfibrillated
  • oxycellulose, US Pat. 5405953.
  • Battista, O.A., 1950. Hydrolysis and crystallization of cellulose, J. Ind. Eng. Chem., 42:502–7.
  • Berglund, L., 2005. Cellulose-based nanocomposites, eds: mohanty, A.K., Misra, M., Drzal, L., Florida:CRC Press, pp. 807-32.
  • Bhattacharya, D., Germinario, l.t., winter, w.t., 2008. ısolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydr. Polym., 73(3):371-7.
  • Bruce, D.M., Hobson, r.n., farrent, j.w., hepworth, d.g., 2005. high-performance composites from low-cost plant primary cell walls, Compos. Part A-Appl. S., 36(11): 1486-93.
  • Buchert, J., Teleman, A., Harjunpää, V., Tenkanen, M., Viikari, L., Vuorinen, T., 1995. Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp, tappi j., 78(11):125-30.
  • Buléon, A., Colonna, P., Planchot, V., Ball, S., 1998. Starch granules: structure and biosynthesis, Int. J. Biol. Macromol., 23(2):85-112.
  • Buzea, C., Pacheco, I., Robbie, K., 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, 4, Mr17-Mr172.
  • Cao, X., Chen, Y., Chang, P.R., Muir, A.D., Falk, D., 2008. Starch-Based Nanocomposites Reinforced with Flax Cellulose Nanocrystals, XPRESS Polym. Lett., 2(7): 502-10.
  • Candan, Z., 2011. Nanoteknolojinin ahşap endüstrisinin gelişimine sunduğu imkanlar, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Cardamone, J.M., Martin, J.J., 2008. Keratin Coatings for Wool: Shrinkproofing and nanoparticle delivery, Macromol. Symp., 272:161-6.
  • Cash, M.J., Chan, A.N., Conner, H.T., Cowan, P.J., Gelman, R.A., Lusvardi, K.M., Thompson, S.A., Tise, F.P., 2003. Derivatized microfibrillar polysaccharide, US Pat. 6602994 B1.
  • Chen, W., Yu, H., Liu, Y., 2011. Preparation of millimeter- long cellulose ı nanofibers with diameters of 30–80nm from bamboo fibers, Carbohydr. Polym., 86(2):453-61.
  • Chinga-Carrasco, G., Miettinen, A., Luengo Hendriks, C.L., Kataja, Gamstedt, characterisation of kraft pulp fibres and their nanofibrillated materials for biodegradable composite applications, ın nanocomposites and polymers with analytical methods, ed: Cuppoletti, J., Rijeka-Croatia, pp. 243-260. M. 2011. Structural
  • Chinga-Carrasco, G., 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of mfc components from a plant physiology and fibre technology point of view,Nanoscale Res. Lett., 6(417): 2-7.
  • Chinga-Carrasco, G., Yu, Y., Diserud, O., 2011. Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and pinus radiata kraft pulp fibers, Microsc. Microanal., 17(4):563-71.
  • Christian, A., Gällstedt, M., Lindström, T., 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings,Cellulose, 17(3):559-74.
  • Curtol, F., Eksteen, N.C., 2006. Method and apparatus for manufacturing of microfibrillated cellulose fiber, US Pat. 20060006189 A1.
  • Da Silva Perez, D., Dufresne, A., 2009. Overview of cellulose nanocrystals and nanofibers: the science and technology a european perspective, OECD Conference on Potential Environmental Benefits of Nanotechnology: Fostering Conference Centre, Paris-France. Growth OECD
  • Daisuke, T., Ishioka, S., Matsumoto, T., 2002. Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions, Journal of the Society of Rheology (Japan),30(1):27-32.
  • Deniz, İ., Hafızoğlu, H., 2012. Odun kimyası ders notları, KTU Orman Fakültesi, Trabzon, Pp: 201.
  • Dinand, E., Chanzy, H., Vignon, M., 1996. Parenchymal cell cellulose from sugar beet pulp: preparation and properties, Cellulose, 3(1):183-8.
  • Dong, X.M., Kimura, T., Revol, J.F., Gray, D.G., 1996. Effects of ıonic strength on the ısotropic−chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir, 12(8):2076-82.
  • Dufresne, A., Cavaillé, J.Y., Vignon, M.R., 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, J. Appl. Polym. Sci., 64(69: 1185
  • Dufresne, A., Dupeyre, D., Vignon, M., 2000. Cellulose microfibrils from potato tuber cells: processing and characterization composites, J. Appl. Polym. Sci., 76(14):2080-92.
  • Dufresne, A., 2008. Polysaccharide nano crystal reinforced nanocomposites, Can. J. Chem., 86(6):484-94.
  • Edwards, S.A., 2006. The nanotech pioneers, WILEY-VCH, USA, Pp: 257.
  • Eklund, D., Lindström, T., 1991. Paper chemistry-an ıntroduction, dt paper science, grankulla, Finland.
  • Eriksen, Ø., Syverud, K., Gregersen, Ø., 2008. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in tmp paper, Nord. Pulp Paper Res. J., 23(3):299-304.
  • Fall, A.B., Lindström, S.B., Sundman, O., Odberg, L., Wagberg, L., 2011. Colloidal stability of aqueous nanofibrillated cellulose dispersions, Langmuir, 27(18): 11332-8.
  • Fan, Y., Saito, T., Isogai, A., 2009. TEMPO-Mediated oxidation of β-Chitin to prepare ındividual nanofibrils, Carbohydr. Polym., 77:832-8.
  • Fernandes Diniz, J.M.B., Gil, M.H., Castro, J.A.A.M., 2004. Hornification-Its origin and ınterpretation in wood pulps, Wood Sci. Technol., 37(6):489-94.
  • Fischer, F., Rigacci, A., Pirard, R., Berthon-Fabry, S., Achard, P., 2006. Cellulose-Based aerogels, polymer, 47(22):7636- 45.
  • Fleming, K., Gray, D.G., Matthews, S., 2001. Cellulose crystallites, chemistry-a european journal, 7(9):1831-5.
  • Fujisawa, F., Okita, Y., Fukuzumi, Hi, Saito, Ti, Isogai, A., 2011. Preparation and characterization of TEMPO- Oxidized cellulose nanofibril films with free carboxyl groups, Carbohydr. Polym., 84: 579-83.
  • Fukuzumı, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2008. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, 10(1): 162-5.
  • Gellerstedt, G., Hardell, H.L., Lindfors, E L., 1980. The reactions of lignin with alkaline hydrogen peroxide, Part IV. Products from the oxidation of quinone model compounds, acta chemica scandinavica, Series B: Organic Chem. Biochem., B34, 9, 669-73.
  • Gregory, J., 1989. Fundamentals of flocculation, Crit. Rev. Environ. Contr., 19(3):185-230.
  • Grignon, J., Scallan, A.M., 1980. Effect of ph and neutral salts upon the swelling of cellulose gels, J. App. Polym. Sci., 25(12): 2829-43.
  • Habibi, Y., Vignon, M., 2008. Optimization of cellouronic acid synthesis by TEMPO mediated oxidation of cellulose ııı from sugar beet pulp, Cellulose, 15(1):177- 85. Habibi, Y., Mahrouz, M., Vignon, M.R., 2009. Microfibrillated cellulose from the peel of prickly pear fruits, Food Chem., 115(2):423-9.
  • Hayaka, F., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-Mediated oxidation, Biomacromolecules, 10(1):162-5.
  • Hayashi, N., Kondoi T., Ishihara, M., 2005. Enzymatically produced nano-ordered short elements containing cellulose ıb crystalline domains, Carbohydr. Polym.,61, 191-7.
  • Heıjnesson-Hultén, A., 2006. Method of preparing microfibrillar polysaccharide, US Pat. 20060289132 A1.
  • Henriksson, M., Berglund, L.A., 2007. Structure and properties of cellulose nanocomposite film containing melamine formaldehyde, J. Appl. Polymer Sci., 106(4): 2817-24.
  • Henriksson, M., Henriksson, G., Berglund, L.A., Lindström, T., 2007. An environmentally friendly method for enzyme-assisted cellulose (MFC) Nanofibres, Eur. Polym. J., 43(8):3434- 41. of micro-fibrillated
  • Henriksson, M., Berglund, L.A., Isaksson, P., Lindstöm, T., Nishino, T., 2008. Cellulose nanopaper structures of high toughness, Biomacromolecules, 9(6): 1579-85.
  • Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R., 1983. Microfibrillated Cellulose: Morphology and Accessibility, J. Appl. Polym. Sci., 37: 797-813.
  • Holmbom, B., Stenius, P., 2000. Analytical methods, ın: stenius, p., pakarinen, h. (eds), papermaking science and technology, Book 3 Forest Products Chemistry, edited- by., Fapet Oy, Helsinki-Finland, pp.105-69.
  • Houssine, S., Salajková, M., Zhou, Q., Berglund, L.A., 2010. Mechanical performance tailoring of tough ultra- high porosity foams prepared from cellulose ı nanofiber suspensions, Soft Matter, 6(8):1824-32.
  • Hubbe, M.A., 2006. Bonding between cellulosic fibers in the absence and presence of dry-strength agents a review, BioRes., 1(2): 281-318.
  • Hubbe, M.A., Heitmann, J.A., 2007. Review of factors affecting the release of water from cellulosic fibers during paper manufacture, BioRes., 2(3):500-33.
  • Hult, E.L., Larsson, P.T., Iversen, T., 2001. Cellulose fibril aggregation-an inherent property of kraft pulps, Polymer, 42(8):3309-14.
  • Ioelovıch, M., Leykin, A., 2004. Nanocellulose and ıts application, J.SITA., 6(3):17-24.
  • Ishikawa, H., Ide, S., 1993. Method of producing finely divided fibrous cellulose particles, US Pat. 5269470.
  • Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO Oxidized cellulose nanofibers, Nanoscale, 3:71-85.
  • István, S., Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose, 17 (3): 459-94.
  • Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M., 2005. Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A-Mater., 81(6): 1109-12.
  • Iwamoto, S., Nakagaito, A.N., Yano, H., 2007. Nano- Fibrillation ofAppl. Phys. A-Mater., 89(2):461-6.
  • Iwamoto, S., Abe, K., Yano, H., 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics, Biomacromolecules, 9(3):1022-6.
  • Iwamoto, S., Kaii W., Isogaii T., Saitoi T., Isogaii A., Iwatai T.i 2010. comparison study of TEMPO-Analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils, Polym. Degrad. Stabil., 95: 1394-8.
  • Janardhan, S., Sain, M., 2006. Isolation of cellulose microfibrils-an enzymatic approach, BioRes., 1(2):176- 88.
  • Kelsall, R.W., Hamley, I.W., Geoghegan, M., 2005. Nanoscale science and technology, John Wiley & Sons, West Sussex, Pp: 456.
  • Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., 2006. Schmauder, HP., Marsch, S., Nanocelluloses as ınnovative polymers in research and application, adv. Polymer Sci., 205: 49-96.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A., 2011. Nanocelluloses: a new family of nature-based materials, Angewandte 50(24):5438–66. International Edition,
  • Laine, J., Lövgren, L., Stenius, P., Sjöberg, S., 1994. Potentiometric titration of unbleached kraft cellulose fibre surfaces, Colloids Surf. A , 88(2-3): 277-87.
  • Lavoine, N., Desloges, I., Dufresne, A., Bras, J., 2012. Microfibrillated cellulose–ıts barrier properties and applications Carbohydr. Polym., 90(2): 735-64. A review.
  • Lee, S.Y., Chun, S.Jin., Kang, I.A., Park, J.Y., 2009. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films, J. Ind. Eng. Chem., 15(1): 50-5.
  • Leitner, J., Hinterstoisser, B., Wastyn, M., Keckes, J., Gindl, W., 2007. Sugar beet cellulose nanofibril-reinforced composites, Cellulose, 14(5): 419-25.
  • Lima, M.M.D., Borsali, R., 2004. Rodlike cellulose microcrystals: Structure, Properties, and Applications, Macromolecular Rapid Communications, 25(7):771-87.
  • Lindström, T., Winter, L., 1988. Mikrofibrillär cellulosa som meddelande, C159.
  • papperstillverkning, STFI
  • Lindström, T., Ankerfors, M., 2009. NanoCellulose Developments in Scandinavia, 7th International Paper and Coating Chemistry Symposium, Ontario-Canada.
  • Lindy, H., Thielemans, W., 2010. Cellulose nanowhisker aerogels, Green Chemistry, 12(8):1448-53.
  • Liu, S., Yan, Q., Tao, D., Yu, T., Liu, X., 2012. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates, Carbohydr. Polym., 89(2): 551-7.
  • Mabire, F., Audebert, R., Quivoron, C., 1984. Synthesis and solution properties of water soluble copolymers based on acrylamide and quaternary ammonium acrylic comonomer, Polymer, 25(9): 1317-22.
  • Malainine, M.E., Mahrouz, M., Dufresne, A., 2005. Thermoplastic nanocomposites based on cellulose microfibrils from opuntia ficus-indica parenchyma cell, Compos. Sci. Technol., 65(10):1520-6.
  • Marielle, H., Berglund, L.A., Isaksson, P., Lindström, T., Nishino, T., 2008. Cellulose nanopaper structures of high toughness, Biomacromolecules, 9(6):1579-85.
  • Martin, J.J., Cardamone, J.M., Irwin, P.L., Brown, E.M., 2011. Keratin capped silver nanoparticles- synthesis and characterization of a nanomaterial with desirable handling properties, Colloids Surf B Biointerfaces, 88(1): 354-61.
  • Matsuda, Y., 2000. Properties and use of microfibrillated cellulose as papermaking additive, Sen'i Gakkaishi, 56(7):192-6.
  • Matsuda, Y., Hirose, M., Ueno, K., 2001. Super microfibrillated, process for producing the same and coated paper and tinted paper using the same, US Pat. 6214163 B1.
  • Morán, J., Alvarez, V., Cyras, V., Vázquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, 15(1):149-59.
  • Mosbye, J., Moe, S., Laine, J., 2002. The charge and chemical composition of fines in mechanical pulp, Nord. Pulp Paper Res. J., 17(3):352-6.
  • Nakagaito, A.N., Yano, H., 2004. The effect of morphological changes from pulp fiber towards nano- scale fibrillated cellulose on the mechanical properties of highstrength plant fiber based composites, Appl. Phys. A-Mater., 78(4): 547-52.
  • Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., 2009. Optically transparent nanofiber paper, Advanced Materials, 21(16):1595-8.
  • Nogi, M., Yano, H., 2009. Optically transparent nanofiber sheets by deposition of transparent materials: A Concept for a roll-to-roll processing, Appl. Phys. Lett., 94, 233117-1.
  • Olszewska, A., Eronen, P., Johansson, L.S., Malho, J.M., Ankerfors, M., Lindström, T., Ruokolainen, J., Laine, J., Österberg, M., 2011. The behaviour of cationic nanofibrillar cellulose in aqueous media, Cellulose,
  • Orts, W.J., Godbout, L., Marchessault, R.H., Revol, J.F., ordering 1998. suspensions of cellulose microfibrils: A small-angle neutron scattering study, Macromolecules, 31(17): 5717- 25. of liquid crystalline
  • Özmen, N., Çetin, N.S., Narlıoğlu, N., 2013. Kavak (Populus nigra x Populus deltoides) odunundan selüloz nanokristalit eldesi, SDÜ Orman Fakültesi Dergisi, 14:58-63.
  • Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T., 2007. Enzymatic hydrolysis combined with mechanical shearing nanoscale cellulose Biomacromolecules, 8(6):1934-41. and gels, fibrils strong
  • Pääkko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindström, T., Berglund, L.A., Ikkala, O., 2008. Long and entangled native cellulose ı nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, 4(12): 2492-9.
  • Peng, Y., Gardner, D., Han, Y., 2012a. Drying cellulose nanofibrils: In search of a suitable method, Cellulose, 19(1): 91-102.
  • Peng, Y., Yousoo, H., Gardner, J.D., 2012b. Spray-Drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution, Wood Fiber Sci., 44(4): 1-14.
  • Picciotto H.A., Wissner-Gross A.D., Lavallee, G., Weiss, P.S. 2007. Arrays of cu21-complexed organic clusters grown on gold nano dots, j. exp. nanosci., 2(1-2):3–11.
  • Poole, C.P.Jr., Owens, F.J., 2003. Introduction to nanotechnology. john wiley & sons, New Jersey, Pp: 400.
  • Qingqing, L., Renneckar, S., 2011. Supramolecular structure characterization of molecularly thin cellulose ı nanoparticles, Biomacromolecules, 12(3):650-9.
  • Rånby, B.G., 1949. Aqueous colloidal solutions of cellulose micelles, Acta Chemica Scandinavica, 3: 649-50.
  • Retulaınen, E., Luukko, K., Fagerholm, K., Pere, J., Laine, J., Paulapuro, H., 2002. Papermaking quality of fines from different pulps-The effect of size, shape and chemical composition, Appita J., 55(6):457-60.
  • Revol, J.F., Godbout, L., Dong, X.M., Gray, D.G., Chanzy, H. Maret, G., 1994. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation, Liquid Crystals, 16(1): 127-34.
  • Roco, M.C.. 2005. International perspective on government nanotechnology funding in 2005, J. Nanopart Res., 7: 707-12.
  • Rojas, O.J., Hubbe, M. A., 2004. The dispersion science of papermaking, J. Dispersion Sci. Technol., 25(6): 713-32.
  • Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A., 2006. Homogeneous suspensions of ındividualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-91.
  • Saito, T., Isogai, A., 2007. Preparation of cellulose single microfibrils from native celluloses by TEMPO-mediated oxidation, Cellulose Communications, 14(2): 62-6.
  • Saito, T., Kimura, T., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO mediated oxidation of native cellulose, Biomacromolecules, 8(8): 2485-91.
  • Scallan, A.M., 1974. The structure of the cell wall of wood- a consequence of anisotropic ıntermicrofibrillar bonding wood Sci., 6(3): 266-71.
  • Scallan, A.M., Tigerström, A.C., 1992. Swelling and elasticity of the cell walls of pulp fibers, J. Pulp Pap. Sci., 18(5): 188-93.
  • Serkov, A.T., 2008. Radishevskii, M.B., Fibre Chemistry, 40: 32-6.
  • Shirazi, M., Van de Ven, T.G.M., Garnier, G., 2003. Adsorption of modified starches on pulp fibers, Langmuir, 19(26): 10835-42.
  • Siqueira, G., Bras, J., Dufresne, A, 2010. Luffa cylindrica as a lignocellulosic source of Fiber, microfibrillated cellulose and cellulose nanocrystals, BioRes., 5(2): 727- 40.
  • Siqueira, G., Tadokoro, S.K., Mathew, A.P., Oksman, K., Carrot, applications, In 7th international symposium on natural polymers and composites, Gramado-Brazil.
  • Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A., 2010. Morphological Investigation of nanoparticles obtained from combined mechanical shearing and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 17(6):1147-58.
  • Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A., 2011. Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 18(1): 57-65.
  • Siro, I., Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A Review, Cellulose, 17(3):459-94.
  • Sjostrom, E., 1989. The origin of charge on cellulosic fibers, Nord. Pulp Paper Res. J., 4(2): 90-3.
  • Spence, K., Venditti, R., Rojas, O., Habibi, Y., Pawlak, J., 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water ınteractions and physical properties for packaging applications, Cellulose, 17(4): 835- 48.
  • Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J., 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical and Bioresour. Technol., 101(15):5961-8. physical properties,
  • Stenius, P., 2000. Macromolecular, Surface, and colloid chemistry, In: Stenius, P.,Pakarinen, H. (eds.), Papermaking science and technology, Book 3 Forest Products Chemistry, Fapet Oy, Helsinki-Finland, pp.170-276.
  • Stone, J.E., Scallan, A.M., Abrahamson, B., 1968. Influence of beating on cell wall swelling and ınternal fibrillation, Svensk Papperstidning, 71(19):687-94.
  • Šukytė, J., Adomavičiūtė, E., Milašius, R., 2010. Investigation of the possibility of forming nanofibres with potato starch, Fibres & Textiles in Eastern Europe, 5:82, 24-7.
  • Sundberg, A., Sundberg, K., Lillandt, C., Holmbom, B., 1996. Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography, Nord. Pulp Paper Res. J., 11(4):216-9. Swerin,
  • A., Wågberg, L., 1994. Size-Exclusion
  • chromotography for characterization of cationic
  • polyelectrolytes used in papermaking, Nord. Pulp Pap.
  • Res. J., 9(1):18-25.
  • Syverud, K., Stenius, P., 2009. Strength and barrier properties of MFC films, Cellulose, 16(1):75-85.
  • Tan, Z., Nguyen, X., Maurer, K.L., 2007. Chemical activation and refining of southern pine kraft fibers, US Pat. 20070119556 A1.
  • Taniguchi, T., 1996a. Microfibrillation of natural fibrous materials, Journal of the Society of Materials Science (Japan), 45(4):472-3.
  • Taniguchi, T., 1996b. Microfibrillated method of natural fibres, Sen´i Kikai Gakkaishi, 52:119-23.
  • Taniguchi, T., Okamura, K., 1998. New films produced from microfibrillated natural fibres. Polym. Int., 47(3): 291-4. Taniguchi, N.,1974. On the basic concept of nanotechnology, Proc. Intl. Conf. Prod., London, Pp:
  • Teleman, A., Harjunpää, V., Tenkanen, M., Buchert, J., Hausalo, T., Drakenberg, T., Vuorinen, T., 1995. Characterisation enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and spectroscopy, Carbohydr. Res., 272(1):55-71. 13C NMR
  • Turbak, A.F., Snyder, F.W., Sandberg, K.R., 1982. Suspensions containing microfibrillated cellulose, US Pat. 4452721.
  • Turbak, A.F., Snyder, F.W., 1983. Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J. Appl. Polym. Sci., 37:815-27.
  • Uetani, K., Yano, H., 2010. Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules, 12(2): 348-53.
  • Wågberg, L., Winter, L., Ödberg, L., Lindström, T., 1987. On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials, Colloids and Surfaces, 27(4):163-73.
  • Wågberg, L., Decher, G., Norgren, M., Lindström, T., Ankerfors, M., Axnäs, K., 2008. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes, Langmuir, 24(3):784-95.
  • Walecka, J.A., 1956. An ınvestigation of low degree of substitution carboxymethylcelluloses, (doctoral thesis), Lawrence College, Appelton, Wisconsin, USA.
  • Wang, B., Sain, M., 2007a. Dispersion of soybean stock- based nanofiber in a plastic matrix, polym. Int., 56(4): 538-46.
  • Wang, B., Sain, M., 2007b. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Compos. Sci. Technol., 67(11-12): 2521-7.
  • Wang, B., Sain, M., Oksman, K., 2007. Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. Compos. Mater., 14(2):89-103.
  • Wim, T., Warbey, C.A, Walsh, D.A., 2009. Permselective nanostructured nanowhiskers, Green Chemistry, 11(4):531–7. based on cellulose
  • Winter, L., 1987. On the hamaker constant of cellulose, (licentiate thesis), KTH, Stockholm, Sweden.
  • Wu, N., Hubbe, M.A., Rojas, O.J., Park, S., 2009. Permeation of polyelectrolytes and other solutes into the pore spaces of water-swollen cellulose: A Review, BioRes., 4(3):1222-62.
  • Xhanarı, K., Syverud, K., Chinga-Carrasco, G., Paso, K., Stenius, P., 2011. Structure of nanofibrillated cellulose layers at the o/w ınterface, J.olloid Interface Sci., 356(1): 58-62.
  • Yamashita, Y., Ko, F., Miyake, H., Higashiyama, A., 2007. Establishment of nano fiber preparation technique for nanocomposite, 16th ınternational conference on composite materials, Kyoto-Japan, pp: 1-6.
  • Yano, H., Nakahara, S., 2004. Bio-Composites produced from plant microfiber bundles with a nanometer unit web-like network, J. Mat. Sci., 39(5):1635-8.
  • Young, R.A., 1994. Comparison of the properties of chemical cellulose pulps, Cellulose, 1(2):107-30.
  • Zhao, H.P., Feng, X.Q., Gao, H., 2007. Ultrasonic technique for extracting nanofibres from nature materials, Appl. Phys. Lett., 90, 7, 073112-073112-2.
  • Zimmermann, T., Pöhler, E., Geiger, T., 2004. Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 6(9): 754-61.
  • Zimmermann, T., Bordeanu, N., Strub, E., 2010. Properties of nanofibrillated cellulose from different raw materials and ıts reinforcement potential, Carbohydr. Polym.,
  • Zuluaga, R., Putaux, J.L., Restrepo, A., Mondragon, I., Gañán, P., 2007. Cellulose microfibrils from banana farming cellulose, 14(6):585-92.

Nanocellulose production technology

Year 2015, Volume 16, Issue 2, 203 - 219, 09.11.2015
https://doi.org/10.18182/tjf.09718

Abstract

In recent years, technological developments in the area of nanotechnology have dramatically improved the technology. Some research have particularly been accomplished on medical and textile industries in Turkey. Even studies in forest industy on the subject have gained importance in the world, there is so limited research in Turkey. The aim of this review is to inform researches specifically studiying on wood science about nanocellulose production and uses. This review includes methods of nanocelllose production from wood cellulose and its physical and morphological and chemical properties. İn addition, the nanocellulose utlization areas are detailed. Keywords: Nanotechnology, Nanocellulose, Paper, Material

References

  • Abe, K., Iwamoto, S., Yano, H., 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. biomacromolecules, 8(10): 3276-8.
  • Adomavičiūtė, E., Milašius, R., Žemaitaitis, A., Bendoraitienė, J., Leskovšek, M., Demšar, A., 2009. Methods of forming nanofibres from bicomponent pva/cationic starch solution, Fibres & Textiles in Eastern Europe, 3(74): 29-33.
  • Ahola, S., Österberg, M., Laine, J., 2008. Cellulose Nanofibrils Epichlorohydrin Studied by QCM-D and Application as a Paper Strength Additive, Cellulose, 15(2):303-14.
  • Alemdar, A., Sain, M., 2008. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties, Compos. Sci. Technol., 68(2):557-65.
  • Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues wheat straw and soy hulls. Bioresour. Technol., 99(6):1664-71.
  • Andresen, M., Stenius, P., 2007. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose, J. Disper. Sci. Technol., 28(6):837-44.
  • Andresen, M., Stenstad, P., Moretro, T., Langsrud, S., Syverud, K., Johansson, L.S., Stenius, P., 2007. Non leaching antimicrobial films prepared from surface- modified microfibrillated cellulose, Biomacromolecules, 8(7):2149-55.
  • Anjerfors, M., 2012. Microfibrillated cellulose: energy- efficient preparation techniques and key properties, (licentiate thesis), Innventia AB, Stockholm, Sweden.
  • Ankerfors, M., Lindström, T., Henriksson, G., 2009. Method for the manufacture of microfibrillated cellulose, US Pat. 20090221812 A1.
  • Anna, S.J., Azizi Samir, M.A.S., Berglund, L.A., 2007. Biomimetic polysaccharide nanocomposites of high cellulose and Biomacromolecules, 8(8):2556-63. high toughness,
  • Anna J.S., Azizi Samir, M.A.S., Berglund, L.A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native nanofibrils, Adv. Mater., 20(7):1263-9.
  • Anonim, 2005. Nanomaterials production 2002-2016: Production volumes, revenues and end user market demand. http://www.researchandmarkets.com/research /5b0347/nanomaterials_pro. Erişim: 15.10.2014. Nano-fibres Anonim, 2006. for filter materials. http://www.scribd.com/doc/30357529/Nano-Fibres-for Filter-Materials. Erişim: 15.10.2014.
  • Anonim, 2007. First annual nanotechnology safety for success http://ec.europa.eu/health/nanotechnology/events/ev_20 071025_en.htm. Erişim: 15.10.2014. October 2007.
  • Anonim, 2008. Nanomaterials state of the market Q3 2008: broad luxresearchinc.com/research/document_excerpt/3735. Erişim: 15.10.2014. impact https://portal.
  • Anonim, 2011. Global nanomaterials opportunity and emerging trends. http://www.lucintel.com/LucintelBrief/ GlobalNanomaterialsopportunity-Final.pdf. 15.10.2014. Erişim:
  • Anonim, 2013a. Nanoteknoloji nedir? Faydaları ve kullanım alanları nanoteknoloji-nedir-faydalari-ve-kullanim-alanlari- nelerdir. Erişim: 15.10.2014.
  • Anonim, 2013b. Circot, Icar, Central Institute for Research on Cotton Technology. http://www.circot.res.in. Erişim: 15.10.2014.
  • Anonim, 2013c. Method of preparing microfibrillar polysaccharide. EP1896508A1. Erişim: 15.10.2014.
  • Anonim,2013d.http://www.researchandmarkets.com/reports /2271936/the_global_market_for_nanocellulose_to_201 7. Erişim:
  • Anonim, 2013e.Global market for nanofibers (Alumina, and polymer, http://en.wikipedia.org/wiki/Nanocellulose. 15.10.2014. cellulose) to 2017. Erişim: Anonim, 2013f. NanoHeal.
  • http://www.pfi.no/New
  • Biomaterials/Projects/NanoHeal. Erişim: 15.10.2014.
  • Anonim, 2013g. Why wood pulp is world’s new wonder material. mg21528786- wonder-material. Erişim: 15.10.2014.
  • Anonim, 2013h. Yaşlanmayı geciktiren madde keşfedildi http://fwmail.net/bilim/yaslanmayi-geciktiren-madde- kesfedildi/. Erişim: 15.10.2014.
  • Araki, J., Wada, M., Kuga, S., Okano, T., 1998. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloid Surface A, 142(1):75-82.
  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., Wagberg, L., 2009. Nanoscale cellulose films with different crystallinities and mesostructures their surface properties and ınteraction with water, Langmuir, 25(13): 7675-85.
  • Aulin, C., Lindström, T., 2011. Biopolymer coatings for paper and paperboard., ın: biopolymers-new materials for sustainable films and coatings, ed: plackett, d., john wiley and sons ltd, UK, pp. 255-76.
  • Aydemir, D., 2012. Selülozik nano/makro partiküllerle desteklenmiş kompozitlerinin köpüklendirilmesi ve karakterizasyonu, (doktora tezi), Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Bartın. maleik anhidrit (sma)
  • Balzani, V., 2008. Nanoscience and nanotechnology, pure appl. Chem., 80(8):1631-50. Banker, G.S., Kumar, V., 1995. Microfibrillated
  • oxycellulose, US Pat. 5405953.
  • Battista, O.A., 1950. Hydrolysis and crystallization of cellulose, J. Ind. Eng. Chem., 42:502–7.
  • Berglund, L., 2005. Cellulose-based nanocomposites, eds: mohanty, A.K., Misra, M., Drzal, L., Florida:CRC Press, pp. 807-32.
  • Bhattacharya, D., Germinario, l.t., winter, w.t., 2008. ısolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydr. Polym., 73(3):371-7.
  • Bruce, D.M., Hobson, r.n., farrent, j.w., hepworth, d.g., 2005. high-performance composites from low-cost plant primary cell walls, Compos. Part A-Appl. S., 36(11): 1486-93.
  • Buchert, J., Teleman, A., Harjunpää, V., Tenkanen, M., Viikari, L., Vuorinen, T., 1995. Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp, tappi j., 78(11):125-30.
  • Buléon, A., Colonna, P., Planchot, V., Ball, S., 1998. Starch granules: structure and biosynthesis, Int. J. Biol. Macromol., 23(2):85-112.
  • Buzea, C., Pacheco, I., Robbie, K., 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, 4, Mr17-Mr172.
  • Cao, X., Chen, Y., Chang, P.R., Muir, A.D., Falk, D., 2008. Starch-Based Nanocomposites Reinforced with Flax Cellulose Nanocrystals, XPRESS Polym. Lett., 2(7): 502-10.
  • Candan, Z., 2011. Nanoteknolojinin ahşap endüstrisinin gelişimine sunduğu imkanlar, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Cardamone, J.M., Martin, J.J., 2008. Keratin Coatings for Wool: Shrinkproofing and nanoparticle delivery, Macromol. Symp., 272:161-6.
  • Cash, M.J., Chan, A.N., Conner, H.T., Cowan, P.J., Gelman, R.A., Lusvardi, K.M., Thompson, S.A., Tise, F.P., 2003. Derivatized microfibrillar polysaccharide, US Pat. 6602994 B1.
  • Chen, W., Yu, H., Liu, Y., 2011. Preparation of millimeter- long cellulose ı nanofibers with diameters of 30–80nm from bamboo fibers, Carbohydr. Polym., 86(2):453-61.
  • Chinga-Carrasco, G., Miettinen, A., Luengo Hendriks, C.L., Kataja, Gamstedt, characterisation of kraft pulp fibres and their nanofibrillated materials for biodegradable composite applications, ın nanocomposites and polymers with analytical methods, ed: Cuppoletti, J., Rijeka-Croatia, pp. 243-260. M. 2011. Structural
  • Chinga-Carrasco, G., 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of mfc components from a plant physiology and fibre technology point of view,Nanoscale Res. Lett., 6(417): 2-7.
  • Chinga-Carrasco, G., Yu, Y., Diserud, O., 2011. Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and pinus radiata kraft pulp fibers, Microsc. Microanal., 17(4):563-71.
  • Christian, A., Gällstedt, M., Lindström, T., 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings,Cellulose, 17(3):559-74.
  • Curtol, F., Eksteen, N.C., 2006. Method and apparatus for manufacturing of microfibrillated cellulose fiber, US Pat. 20060006189 A1.
  • Da Silva Perez, D., Dufresne, A., 2009. Overview of cellulose nanocrystals and nanofibers: the science and technology a european perspective, OECD Conference on Potential Environmental Benefits of Nanotechnology: Fostering Conference Centre, Paris-France. Growth OECD
  • Daisuke, T., Ishioka, S., Matsumoto, T., 2002. Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions, Journal of the Society of Rheology (Japan),30(1):27-32.
  • Deniz, İ., Hafızoğlu, H., 2012. Odun kimyası ders notları, KTU Orman Fakültesi, Trabzon, Pp: 201.
  • Dinand, E., Chanzy, H., Vignon, M., 1996. Parenchymal cell cellulose from sugar beet pulp: preparation and properties, Cellulose, 3(1):183-8.
  • Dong, X.M., Kimura, T., Revol, J.F., Gray, D.G., 1996. Effects of ıonic strength on the ısotropic−chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir, 12(8):2076-82.
  • Dufresne, A., Cavaillé, J.Y., Vignon, M.R., 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, J. Appl. Polym. Sci., 64(69: 1185
  • Dufresne, A., Dupeyre, D., Vignon, M., 2000. Cellulose microfibrils from potato tuber cells: processing and characterization composites, J. Appl. Polym. Sci., 76(14):2080-92.
  • Dufresne, A., 2008. Polysaccharide nano crystal reinforced nanocomposites, Can. J. Chem., 86(6):484-94.
  • Edwards, S.A., 2006. The nanotech pioneers, WILEY-VCH, USA, Pp: 257.
  • Eklund, D., Lindström, T., 1991. Paper chemistry-an ıntroduction, dt paper science, grankulla, Finland.
  • Eriksen, Ø., Syverud, K., Gregersen, Ø., 2008. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in tmp paper, Nord. Pulp Paper Res. J., 23(3):299-304.
  • Fall, A.B., Lindström, S.B., Sundman, O., Odberg, L., Wagberg, L., 2011. Colloidal stability of aqueous nanofibrillated cellulose dispersions, Langmuir, 27(18): 11332-8.
  • Fan, Y., Saito, T., Isogai, A., 2009. TEMPO-Mediated oxidation of β-Chitin to prepare ındividual nanofibrils, Carbohydr. Polym., 77:832-8.
  • Fernandes Diniz, J.M.B., Gil, M.H., Castro, J.A.A.M., 2004. Hornification-Its origin and ınterpretation in wood pulps, Wood Sci. Technol., 37(6):489-94.
  • Fischer, F., Rigacci, A., Pirard, R., Berthon-Fabry, S., Achard, P., 2006. Cellulose-Based aerogels, polymer, 47(22):7636- 45.
  • Fleming, K., Gray, D.G., Matthews, S., 2001. Cellulose crystallites, chemistry-a european journal, 7(9):1831-5.
  • Fujisawa, F., Okita, Y., Fukuzumi, Hi, Saito, Ti, Isogai, A., 2011. Preparation and characterization of TEMPO- Oxidized cellulose nanofibril films with free carboxyl groups, Carbohydr. Polym., 84: 579-83.
  • Fukuzumı, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2008. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, 10(1): 162-5.
  • Gellerstedt, G., Hardell, H.L., Lindfors, E L., 1980. The reactions of lignin with alkaline hydrogen peroxide, Part IV. Products from the oxidation of quinone model compounds, acta chemica scandinavica, Series B: Organic Chem. Biochem., B34, 9, 669-73.
  • Gregory, J., 1989. Fundamentals of flocculation, Crit. Rev. Environ. Contr., 19(3):185-230.
  • Grignon, J., Scallan, A.M., 1980. Effect of ph and neutral salts upon the swelling of cellulose gels, J. App. Polym. Sci., 25(12): 2829-43.
  • Habibi, Y., Vignon, M., 2008. Optimization of cellouronic acid synthesis by TEMPO mediated oxidation of cellulose ııı from sugar beet pulp, Cellulose, 15(1):177- 85. Habibi, Y., Mahrouz, M., Vignon, M.R., 2009. Microfibrillated cellulose from the peel of prickly pear fruits, Food Chem., 115(2):423-9.
  • Hayaka, F., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-Mediated oxidation, Biomacromolecules, 10(1):162-5.
  • Hayashi, N., Kondoi T., Ishihara, M., 2005. Enzymatically produced nano-ordered short elements containing cellulose ıb crystalline domains, Carbohydr. Polym.,61, 191-7.
  • Heıjnesson-Hultén, A., 2006. Method of preparing microfibrillar polysaccharide, US Pat. 20060289132 A1.
  • Henriksson, M., Berglund, L.A., 2007. Structure and properties of cellulose nanocomposite film containing melamine formaldehyde, J. Appl. Polymer Sci., 106(4): 2817-24.
  • Henriksson, M., Henriksson, G., Berglund, L.A., Lindström, T., 2007. An environmentally friendly method for enzyme-assisted cellulose (MFC) Nanofibres, Eur. Polym. J., 43(8):3434- 41. of micro-fibrillated
  • Henriksson, M., Berglund, L.A., Isaksson, P., Lindstöm, T., Nishino, T., 2008. Cellulose nanopaper structures of high toughness, Biomacromolecules, 9(6): 1579-85.
  • Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R., 1983. Microfibrillated Cellulose: Morphology and Accessibility, J. Appl. Polym. Sci., 37: 797-813.
  • Holmbom, B., Stenius, P., 2000. Analytical methods, ın: stenius, p., pakarinen, h. (eds), papermaking science and technology, Book 3 Forest Products Chemistry, edited- by., Fapet Oy, Helsinki-Finland, pp.105-69.
  • Houssine, S., Salajková, M., Zhou, Q., Berglund, L.A., 2010. Mechanical performance tailoring of tough ultra- high porosity foams prepared from cellulose ı nanofiber suspensions, Soft Matter, 6(8):1824-32.
  • Hubbe, M.A., 2006. Bonding between cellulosic fibers in the absence and presence of dry-strength agents a review, BioRes., 1(2): 281-318.
  • Hubbe, M.A., Heitmann, J.A., 2007. Review of factors affecting the release of water from cellulosic fibers during paper manufacture, BioRes., 2(3):500-33.
  • Hult, E.L., Larsson, P.T., Iversen, T., 2001. Cellulose fibril aggregation-an inherent property of kraft pulps, Polymer, 42(8):3309-14.
  • Ioelovıch, M., Leykin, A., 2004. Nanocellulose and ıts application, J.SITA., 6(3):17-24.
  • Ishikawa, H., Ide, S., 1993. Method of producing finely divided fibrous cellulose particles, US Pat. 5269470.
  • Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO Oxidized cellulose nanofibers, Nanoscale, 3:71-85.
  • István, S., Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose, 17 (3): 459-94.
  • Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M., 2005. Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A-Mater., 81(6): 1109-12.
  • Iwamoto, S., Nakagaito, A.N., Yano, H., 2007. Nano- Fibrillation ofAppl. Phys. A-Mater., 89(2):461-6.
  • Iwamoto, S., Abe, K., Yano, H., 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics, Biomacromolecules, 9(3):1022-6.
  • Iwamoto, S., Kaii W., Isogaii T., Saitoi T., Isogaii A., Iwatai T.i 2010. comparison study of TEMPO-Analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils, Polym. Degrad. Stabil., 95: 1394-8.
  • Janardhan, S., Sain, M., 2006. Isolation of cellulose microfibrils-an enzymatic approach, BioRes., 1(2):176- 88.
  • Kelsall, R.W., Hamley, I.W., Geoghegan, M., 2005. Nanoscale science and technology, John Wiley & Sons, West Sussex, Pp: 456.
  • Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., 2006. Schmauder, HP., Marsch, S., Nanocelluloses as ınnovative polymers in research and application, adv. Polymer Sci., 205: 49-96.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A., 2011. Nanocelluloses: a new family of nature-based materials, Angewandte 50(24):5438–66. International Edition,
  • Laine, J., Lövgren, L., Stenius, P., Sjöberg, S., 1994. Potentiometric titration of unbleached kraft cellulose fibre surfaces, Colloids Surf. A , 88(2-3): 277-87.
  • Lavoine, N., Desloges, I., Dufresne, A., Bras, J., 2012. Microfibrillated cellulose–ıts barrier properties and applications Carbohydr. Polym., 90(2): 735-64. A review.
  • Lee, S.Y., Chun, S.Jin., Kang, I.A., Park, J.Y., 2009. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films, J. Ind. Eng. Chem., 15(1): 50-5.
  • Leitner, J., Hinterstoisser, B., Wastyn, M., Keckes, J., Gindl, W., 2007. Sugar beet cellulose nanofibril-reinforced composites, Cellulose, 14(5): 419-25.
  • Lima, M.M.D., Borsali, R., 2004. Rodlike cellulose microcrystals: Structure, Properties, and Applications, Macromolecular Rapid Communications, 25(7):771-87.
  • Lindström, T., Winter, L., 1988. Mikrofibrillär cellulosa som meddelande, C159.
  • papperstillverkning, STFI
  • Lindström, T., Ankerfors, M., 2009. NanoCellulose Developments in Scandinavia, 7th International Paper and Coating Chemistry Symposium, Ontario-Canada.
  • Lindy, H., Thielemans, W., 2010. Cellulose nanowhisker aerogels, Green Chemistry, 12(8):1448-53.
  • Liu, S., Yan, Q., Tao, D., Yu, T., Liu, X., 2012. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates, Carbohydr. Polym., 89(2): 551-7.
  • Mabire, F., Audebert, R., Quivoron, C., 1984. Synthesis and solution properties of water soluble copolymers based on acrylamide and quaternary ammonium acrylic comonomer, Polymer, 25(9): 1317-22.
  • Malainine, M.E., Mahrouz, M., Dufresne, A., 2005. Thermoplastic nanocomposites based on cellulose microfibrils from opuntia ficus-indica parenchyma cell, Compos. Sci. Technol., 65(10):1520-6.
  • Marielle, H., Berglund, L.A., Isaksson, P., Lindström, T., Nishino, T., 2008. Cellulose nanopaper structures of high toughness, Biomacromolecules, 9(6):1579-85.
  • Martin, J.J., Cardamone, J.M., Irwin, P.L., Brown, E.M., 2011. Keratin capped silver nanoparticles- synthesis and characterization of a nanomaterial with desirable handling properties, Colloids Surf B Biointerfaces, 88(1): 354-61.
  • Matsuda, Y., 2000. Properties and use of microfibrillated cellulose as papermaking additive, Sen'i Gakkaishi, 56(7):192-6.
  • Matsuda, Y., Hirose, M., Ueno, K., 2001. Super microfibrillated, process for producing the same and coated paper and tinted paper using the same, US Pat. 6214163 B1.
  • Morán, J., Alvarez, V., Cyras, V., Vázquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, 15(1):149-59.
  • Mosbye, J., Moe, S., Laine, J., 2002. The charge and chemical composition of fines in mechanical pulp, Nord. Pulp Paper Res. J., 17(3):352-6.
  • Nakagaito, A.N., Yano, H., 2004. The effect of morphological changes from pulp fiber towards nano- scale fibrillated cellulose on the mechanical properties of highstrength plant fiber based composites, Appl. Phys. A-Mater., 78(4): 547-52.
  • Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., 2009. Optically transparent nanofiber paper, Advanced Materials, 21(16):1595-8.
  • Nogi, M., Yano, H., 2009. Optically transparent nanofiber sheets by deposition of transparent materials: A Concept for a roll-to-roll processing, Appl. Phys. Lett., 94, 233117-1.
  • Olszewska, A., Eronen, P., Johansson, L.S., Malho, J.M., Ankerfors, M., Lindström, T., Ruokolainen, J., Laine, J., Österberg, M., 2011. The behaviour of cationic nanofibrillar cellulose in aqueous media, Cellulose,
  • Orts, W.J., Godbout, L., Marchessault, R.H., Revol, J.F., ordering 1998. suspensions of cellulose microfibrils: A small-angle neutron scattering study, Macromolecules, 31(17): 5717- 25. of liquid crystalline
  • Özmen, N., Çetin, N.S., Narlıoğlu, N., 2013. Kavak (Populus nigra x Populus deltoides) odunundan selüloz nanokristalit eldesi, SDÜ Orman Fakültesi Dergisi, 14:58-63.
  • Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T., 2007. Enzymatic hydrolysis combined with mechanical shearing nanoscale cellulose Biomacromolecules, 8(6):1934-41. and gels, fibrils strong
  • Pääkko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindström, T., Berglund, L.A., Ikkala, O., 2008. Long and entangled native cellulose ı nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, 4(12): 2492-9.
  • Peng, Y., Gardner, D., Han, Y., 2012a. Drying cellulose nanofibrils: In search of a suitable method, Cellulose, 19(1): 91-102.
  • Peng, Y., Yousoo, H., Gardner, J.D., 2012b. Spray-Drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution, Wood Fiber Sci., 44(4): 1-14.
  • Picciotto H.A., Wissner-Gross A.D., Lavallee, G., Weiss, P.S. 2007. Arrays of cu21-complexed organic clusters grown on gold nano dots, j. exp. nanosci., 2(1-2):3–11.
  • Poole, C.P.Jr., Owens, F.J., 2003. Introduction to nanotechnology. john wiley & sons, New Jersey, Pp: 400.
  • Qingqing, L., Renneckar, S., 2011. Supramolecular structure characterization of molecularly thin cellulose ı nanoparticles, Biomacromolecules, 12(3):650-9.
  • Rånby, B.G., 1949. Aqueous colloidal solutions of cellulose micelles, Acta Chemica Scandinavica, 3: 649-50.
  • Retulaınen, E., Luukko, K., Fagerholm, K., Pere, J., Laine, J., Paulapuro, H., 2002. Papermaking quality of fines from different pulps-The effect of size, shape and chemical composition, Appita J., 55(6):457-60.
  • Revol, J.F., Godbout, L., Dong, X.M., Gray, D.G., Chanzy, H. Maret, G., 1994. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation, Liquid Crystals, 16(1): 127-34.
  • Roco, M.C.. 2005. International perspective on government nanotechnology funding in 2005, J. Nanopart Res., 7: 707-12.
  • Rojas, O.J., Hubbe, M. A., 2004. The dispersion science of papermaking, J. Dispersion Sci. Technol., 25(6): 713-32.
  • Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A., 2006. Homogeneous suspensions of ındividualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-91.
  • Saito, T., Isogai, A., 2007. Preparation of cellulose single microfibrils from native celluloses by TEMPO-mediated oxidation, Cellulose Communications, 14(2): 62-6.
  • Saito, T., Kimura, T., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO mediated oxidation of native cellulose, Biomacromolecules, 8(8): 2485-91.
  • Scallan, A.M., 1974. The structure of the cell wall of wood- a consequence of anisotropic ıntermicrofibrillar bonding wood Sci., 6(3): 266-71.
  • Scallan, A.M., Tigerström, A.C., 1992. Swelling and elasticity of the cell walls of pulp fibers, J. Pulp Pap. Sci., 18(5): 188-93.
  • Serkov, A.T., 2008. Radishevskii, M.B., Fibre Chemistry, 40: 32-6.
  • Shirazi, M., Van de Ven, T.G.M., Garnier, G., 2003. Adsorption of modified starches on pulp fibers, Langmuir, 19(26): 10835-42.
  • Siqueira, G., Bras, J., Dufresne, A, 2010. Luffa cylindrica as a lignocellulosic source of Fiber, microfibrillated cellulose and cellulose nanocrystals, BioRes., 5(2): 727- 40.
  • Siqueira, G., Tadokoro, S.K., Mathew, A.P., Oksman, K., Carrot, applications, In 7th international symposium on natural polymers and composites, Gramado-Brazil.
  • Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A., 2010. Morphological Investigation of nanoparticles obtained from combined mechanical shearing and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 17(6):1147-58.
  • Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A., 2011. Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 18(1): 57-65.
  • Siro, I., Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A Review, Cellulose, 17(3):459-94.
  • Sjostrom, E., 1989. The origin of charge on cellulosic fibers, Nord. Pulp Paper Res. J., 4(2): 90-3.
  • Spence, K., Venditti, R., Rojas, O., Habibi, Y., Pawlak, J., 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water ınteractions and physical properties for packaging applications, Cellulose, 17(4): 835- 48.
  • Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J., 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical and Bioresour. Technol., 101(15):5961-8. physical properties,
  • Stenius, P., 2000. Macromolecular, Surface, and colloid chemistry, In: Stenius, P.,Pakarinen, H. (eds.), Papermaking science and technology, Book 3 Forest Products Chemistry, Fapet Oy, Helsinki-Finland, pp.170-276.
  • Stone, J.E., Scallan, A.M., Abrahamson, B., 1968. Influence of beating on cell wall swelling and ınternal fibrillation, Svensk Papperstidning, 71(19):687-94.
  • Šukytė, J., Adomavičiūtė, E., Milašius, R., 2010. Investigation of the possibility of forming nanofibres with potato starch, Fibres & Textiles in Eastern Europe, 5:82, 24-7.
  • Sundberg, A., Sundberg, K., Lillandt, C., Holmbom, B., 1996. Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography, Nord. Pulp Paper Res. J., 11(4):216-9. Swerin,
  • A., Wågberg, L., 1994. Size-Exclusion
  • chromotography for characterization of cationic
  • polyelectrolytes used in papermaking, Nord. Pulp Pap.
  • Res. J., 9(1):18-25.
  • Syverud, K., Stenius, P., 2009. Strength and barrier properties of MFC films, Cellulose, 16(1):75-85.
  • Tan, Z., Nguyen, X., Maurer, K.L., 2007. Chemical activation and refining of southern pine kraft fibers, US Pat. 20070119556 A1.
  • Taniguchi, T., 1996a. Microfibrillation of natural fibrous materials, Journal of the Society of Materials Science (Japan), 45(4):472-3.
  • Taniguchi, T., 1996b. Microfibrillated method of natural fibres, Sen´i Kikai Gakkaishi, 52:119-23.
  • Taniguchi, T., Okamura, K., 1998. New films produced from microfibrillated natural fibres. Polym. Int., 47(3): 291-4. Taniguchi, N.,1974. On the basic concept of nanotechnology, Proc. Intl. Conf. Prod., London, Pp:
  • Teleman, A., Harjunpää, V., Tenkanen, M., Buchert, J., Hausalo, T., Drakenberg, T., Vuorinen, T., 1995. Characterisation enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and spectroscopy, Carbohydr. Res., 272(1):55-71. 13C NMR
  • Turbak, A.F., Snyder, F.W., Sandberg, K.R., 1982. Suspensions containing microfibrillated cellulose, US Pat. 4452721.
  • Turbak, A.F., Snyder, F.W., 1983. Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J. Appl. Polym. Sci., 37:815-27.
  • Uetani, K., Yano, H., 2010. Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules, 12(2): 348-53.
  • Wågberg, L., Winter, L., Ödberg, L., Lindström, T., 1987. On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials, Colloids and Surfaces, 27(4):163-73.
  • Wågberg, L., Decher, G., Norgren, M., Lindström, T., Ankerfors, M., Axnäs, K., 2008. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes, Langmuir, 24(3):784-95.
  • Walecka, J.A., 1956. An ınvestigation of low degree of substitution carboxymethylcelluloses, (doctoral thesis), Lawrence College, Appelton, Wisconsin, USA.
  • Wang, B., Sain, M., 2007a. Dispersion of soybean stock- based nanofiber in a plastic matrix, polym. Int., 56(4): 538-46.
  • Wang, B., Sain, M., 2007b. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Compos. Sci. Technol., 67(11-12): 2521-7.
  • Wang, B., Sain, M., Oksman, K., 2007. Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. Compos. Mater., 14(2):89-103.
  • Wim, T., Warbey, C.A, Walsh, D.A., 2009. Permselective nanostructured nanowhiskers, Green Chemistry, 11(4):531–7. based on cellulose
  • Winter, L., 1987. On the hamaker constant of cellulose, (licentiate thesis), KTH, Stockholm, Sweden.
  • Wu, N., Hubbe, M.A., Rojas, O.J., Park, S., 2009. Permeation of polyelectrolytes and other solutes into the pore spaces of water-swollen cellulose: A Review, BioRes., 4(3):1222-62.
  • Xhanarı, K., Syverud, K., Chinga-Carrasco, G., Paso, K., Stenius, P., 2011. Structure of nanofibrillated cellulose layers at the o/w ınterface, J.olloid Interface Sci., 356(1): 58-62.
  • Yamashita, Y., Ko, F., Miyake, H., Higashiyama, A., 2007. Establishment of nano fiber preparation technique for nanocomposite, 16th ınternational conference on composite materials, Kyoto-Japan, pp: 1-6.
  • Yano, H., Nakahara, S., 2004. Bio-Composites produced from plant microfiber bundles with a nanometer unit web-like network, J. Mat. Sci., 39(5):1635-8.
  • Young, R.A., 1994. Comparison of the properties of chemical cellulose pulps, Cellulose, 1(2):107-30.
  • Zhao, H.P., Feng, X.Q., Gao, H., 2007. Ultrasonic technique for extracting nanofibres from nature materials, Appl. Phys. Lett., 90, 7, 073112-073112-2.
  • Zimmermann, T., Pöhler, E., Geiger, T., 2004. Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 6(9): 754-61.
  • Zimmermann, T., Bordeanu, N., Strub, E., 2010. Properties of nanofibrillated cellulose from different raw materials and ıts reinforcement potential, Carbohydr. Polym.,
  • Zuluaga, R., Putaux, J.L., Restrepo, A., Mondragon, I., Gañán, P., 2007. Cellulose microfibrils from banana farming cellulose, 14(6):585-92.

Nanoselüloz üretim teknolojisi

Year 2015, Volume 16, Issue 2, 203 - 219, 09.11.2015
https://doi.org/10.18182/tjf.09718

Abstract

Son yıllarda teknolojik gelişmeler nanoteknoloji çalışmalarıyla büyük bir atılım göstermiştir. Konu ile ilgili olarak ülkemizde medikal ve tekstil alanlarındaki araştırmalar dikkat çekmektedir. Buna karşılık orman ürünleri alanındaki araştırmalar dünya bazında önem kazanırken ülkemizde konu hakkında oldukça kısıtlı araştırmalar yürütülmektedir. Bu derlemenin amacı orman ürünleri alanında çalışma yapan araştırmacıları nanoselüloz konusunda bilgilerndirmektir. Bu derleme kapsamında odunun ana kimyasal bileşenlerinden biri olan selülozun nano boyuta indirgenmesi, elde edilen nanoselülozların morfolojik, fiziksel ve kimyasal özellikleri ve kullanım alanları detaylı olarak irdelenmiştir. Anahtar kelimeler: Nanoteknoloji, Nanoselüloz, Kağıt, Malzeme

References

  • Abe, K., Iwamoto, S., Yano, H., 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. biomacromolecules, 8(10): 3276-8.
  • Adomavičiūtė, E., Milašius, R., Žemaitaitis, A., Bendoraitienė, J., Leskovšek, M., Demšar, A., 2009. Methods of forming nanofibres from bicomponent pva/cationic starch solution, Fibres & Textiles in Eastern Europe, 3(74): 29-33.
  • Ahola, S., Österberg, M., Laine, J., 2008. Cellulose Nanofibrils Epichlorohydrin Studied by QCM-D and Application as a Paper Strength Additive, Cellulose, 15(2):303-14.
  • Alemdar, A., Sain, M., 2008. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties, Compos. Sci. Technol., 68(2):557-65.
  • Alemdar, A., Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues wheat straw and soy hulls. Bioresour. Technol., 99(6):1664-71.
  • Andresen, M., Stenius, P., 2007. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose, J. Disper. Sci. Technol., 28(6):837-44.
  • Andresen, M., Stenstad, P., Moretro, T., Langsrud, S., Syverud, K., Johansson, L.S., Stenius, P., 2007. Non leaching antimicrobial films prepared from surface- modified microfibrillated cellulose, Biomacromolecules, 8(7):2149-55.
  • Anjerfors, M., 2012. Microfibrillated cellulose: energy- efficient preparation techniques and key properties, (licentiate thesis), Innventia AB, Stockholm, Sweden.
  • Ankerfors, M., Lindström, T., Henriksson, G., 2009. Method for the manufacture of microfibrillated cellulose, US Pat. 20090221812 A1.
  • Anna, S.J., Azizi Samir, M.A.S., Berglund, L.A., 2007. Biomimetic polysaccharide nanocomposites of high cellulose and Biomacromolecules, 8(8):2556-63. high toughness,
  • Anna J.S., Azizi Samir, M.A.S., Berglund, L.A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native nanofibrils, Adv. Mater., 20(7):1263-9.
  • Anonim, 2005. Nanomaterials production 2002-2016: Production volumes, revenues and end user market demand. http://www.researchandmarkets.com/research /5b0347/nanomaterials_pro. Erişim: 15.10.2014. Nano-fibres Anonim, 2006. for filter materials. http://www.scribd.com/doc/30357529/Nano-Fibres-for Filter-Materials. Erişim: 15.10.2014.
  • Anonim, 2007. First annual nanotechnology safety for success http://ec.europa.eu/health/nanotechnology/events/ev_20 071025_en.htm. Erişim: 15.10.2014. October 2007.
  • Anonim, 2008. Nanomaterials state of the market Q3 2008: broad luxresearchinc.com/research/document_excerpt/3735. Erişim: 15.10.2014. impact https://portal.
  • Anonim, 2011. Global nanomaterials opportunity and emerging trends. http://www.lucintel.com/LucintelBrief/ GlobalNanomaterialsopportunity-Final.pdf. 15.10.2014. Erişim:
  • Anonim, 2013a. Nanoteknoloji nedir? Faydaları ve kullanım alanları nanoteknoloji-nedir-faydalari-ve-kullanim-alanlari- nelerdir. Erişim: 15.10.2014.
  • Anonim, 2013b. Circot, Icar, Central Institute for Research on Cotton Technology. http://www.circot.res.in. Erişim: 15.10.2014.
  • Anonim, 2013c. Method of preparing microfibrillar polysaccharide. EP1896508A1. Erişim: 15.10.2014.
  • Anonim,2013d.http://www.researchandmarkets.com/reports /2271936/the_global_market_for_nanocellulose_to_201 7. Erişim:
  • Anonim, 2013e.Global market for nanofibers (Alumina, and polymer, http://en.wikipedia.org/wiki/Nanocellulose. 15.10.2014. cellulose) to 2017. Erişim: Anonim, 2013f. NanoHeal.
  • http://www.pfi.no/New
  • Biomaterials/Projects/NanoHeal. Erişim: 15.10.2014.
  • Anonim, 2013g. Why wood pulp is world’s new wonder material. mg21528786- wonder-material. Erişim: 15.10.2014.
  • Anonim, 2013h. Yaşlanmayı geciktiren madde keşfedildi http://fwmail.net/bilim/yaslanmayi-geciktiren-madde- kesfedildi/. Erişim: 15.10.2014.
  • Araki, J., Wada, M., Kuga, S., Okano, T., 1998. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloid Surface A, 142(1):75-82.
  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., Wagberg, L., 2009. Nanoscale cellulose films with different crystallinities and mesostructures their surface properties and ınteraction with water, Langmuir, 25(13): 7675-85.
  • Aulin, C., Lindström, T., 2011. Biopolymer coatings for paper and paperboard., ın: biopolymers-new materials for sustainable films and coatings, ed: plackett, d., john wiley and sons ltd, UK, pp. 255-76.
  • Aydemir, D., 2012. Selülozik nano/makro partiküllerle desteklenmiş kompozitlerinin köpüklendirilmesi ve karakterizasyonu, (doktora tezi), Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Bartın. maleik anhidrit (sma)
  • Balzani, V., 2008. Nanoscience and nanotechnology, pure appl. Chem., 80(8):1631-50. Banker, G.S., Kumar, V., 1995. Microfibrillated
  • oxycellulose, US Pat. 5405953.
  • Battista, O.A., 1950. Hydrolysis and crystallization of cellulose, J. Ind. Eng. Chem., 42:502–7.
  • Berglund, L., 2005. Cellulose-based nanocomposites, eds: mohanty, A.K., Misra, M., Drzal, L., Florida:CRC Press, pp. 807-32.
  • Bhattacharya, D., Germinario, l.t., winter, w.t., 2008. ısolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydr. Polym., 73(3):371-7.
  • Bruce, D.M., Hobson, r.n., farrent, j.w., hepworth, d.g., 2005. high-performance composites from low-cost plant primary cell walls, Compos. Part A-Appl. S., 36(11): 1486-93.
  • Buchert, J., Teleman, A., Harjunpää, V., Tenkanen, M., Viikari, L., Vuorinen, T., 1995. Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp, tappi j., 78(11):125-30.
  • Buléon, A., Colonna, P., Planchot, V., Ball, S., 1998. Starch granules: structure and biosynthesis, Int. J. Biol. Macromol., 23(2):85-112.
  • Buzea, C., Pacheco, I., Robbie, K., 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, 4, Mr17-Mr172.
  • Cao, X., Chen, Y., Chang, P.R., Muir, A.D., Falk, D., 2008. Starch-Based Nanocomposites Reinforced with Flax Cellulose Nanocrystals, XPRESS Polym. Lett., 2(7): 502-10.
  • Candan, Z., 2011. Nanoteknolojinin ahşap endüstrisinin gelişimine sunduğu imkanlar, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Cardamone, J.M., Martin, J.J., 2008. Keratin Coatings for Wool: Shrinkproofing and nanoparticle delivery, Macromol. Symp., 272:161-6.
  • Cash, M.J., Chan, A.N., Conner, H.T., Cowan, P.J., Gelman, R.A., Lusvardi, K.M., Thompson, S.A., Tise, F.P., 2003. Derivatized microfibrillar polysaccharide, US Pat. 6602994 B1.
  • Chen, W., Yu, H., Liu, Y., 2011. Preparation of millimeter- long cellulose ı nanofibers with diameters of 30–80nm from bamboo fibers, Carbohydr. Polym., 86(2):453-61.
  • Chinga-Carrasco, G., Miettinen, A., Luengo Hendriks, C.L., Kataja, Gamstedt, characterisation of kraft pulp fibres and their nanofibrillated materials for biodegradable composite applications, ın nanocomposites and polymers with analytical methods, ed: Cuppoletti, J., Rijeka-Croatia, pp. 243-260. M. 2011. Structural
  • Chinga-Carrasco, G., 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of mfc components from a plant physiology and fibre technology point of view,Nanoscale Res. Lett., 6(417): 2-7.
  • Chinga-Carrasco, G., Yu, Y., Diserud, O., 2011. Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and pinus radiata kraft pulp fibers, Microsc. Microanal., 17(4):563-71.
  • Christian, A., Gällstedt, M., Lindström, T., 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings,Cellulose, 17(3):559-74.
  • Curtol, F., Eksteen, N.C., 2006. Method and apparatus for manufacturing of microfibrillated cellulose fiber, US Pat. 20060006189 A1.
  • Da Silva Perez, D., Dufresne, A., 2009. Overview of cellulose nanocrystals and nanofibers: the science and technology a european perspective, OECD Conference on Potential Environmental Benefits of Nanotechnology: Fostering Conference Centre, Paris-France. Growth OECD
  • Daisuke, T., Ishioka, S., Matsumoto, T., 2002. Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions, Journal of the Society of Rheology (Japan),30(1):27-32.
  • Deniz, İ., Hafızoğlu, H., 2012. Odun kimyası ders notları, KTU Orman Fakültesi, Trabzon, Pp: 201.
  • Dinand, E., Chanzy, H., Vignon, M., 1996. Parenchymal cell cellulose from sugar beet pulp: preparation and properties, Cellulose, 3(1):183-8.
  • Dong, X.M., Kimura, T., Revol, J.F., Gray, D.G., 1996. Effects of ıonic strength on the ısotropic−chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir, 12(8):2076-82.
  • Dufresne, A., Cavaillé, J.Y., Vignon, M.R., 1997. Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, J. Appl. Polym. Sci., 64(69: 1185
  • Dufresne, A., Dupeyre, D., Vignon, M., 2000. Cellulose microfibrils from potato tuber cells: processing and characterization composites, J. Appl. Polym. Sci., 76(14):2080-92.
  • Dufresne, A., 2008. Polysaccharide nano crystal reinforced nanocomposites, Can. J. Chem., 86(6):484-94.
  • Edwards, S.A., 2006. The nanotech pioneers, WILEY-VCH, USA, Pp: 257.
  • Eklund, D., Lindström, T., 1991. Paper chemistry-an ıntroduction, dt paper science, grankulla, Finland.
  • Eriksen, Ø., Syverud, K., Gregersen, Ø., 2008. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in tmp paper, Nord. Pulp Paper Res. J., 23(3):299-304.
  • Fall, A.B., Lindström, S.B., Sundman, O., Odberg, L., Wagberg, L., 2011. Colloidal stability of aqueous nanofibrillated cellulose dispersions, Langmuir, 27(18): 11332-8.
  • Fan, Y., Saito, T., Isogai, A., 2009. TEMPO-Mediated oxidation of β-Chitin to prepare ındividual nanofibrils, Carbohydr. Polym., 77:832-8.
  • Fernandes Diniz, J.M.B., Gil, M.H., Castro, J.A.A.M., 2004. Hornification-Its origin and ınterpretation in wood pulps, Wood Sci. Technol., 37(6):489-94.
  • Fischer, F., Rigacci, A., Pirard, R., Berthon-Fabry, S., Achard, P., 2006. Cellulose-Based aerogels, polymer, 47(22):7636- 45.
  • Fleming, K., Gray, D.G., Matthews, S., 2001. Cellulose crystallites, chemistry-a european journal, 7(9):1831-5.
  • Fujisawa, F., Okita, Y., Fukuzumi, Hi, Saito, Ti, Isogai, A., 2011. Preparation and characterization of TEMPO- Oxidized cellulose nanofibril films with free carboxyl groups, Carbohydr. Polym., 84: 579-83.
  • Fukuzumı, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2008. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, 10(1): 162-5.
  • Gellerstedt, G., Hardell, H.L., Lindfors, E L., 1980. The reactions of lignin with alkaline hydrogen peroxide, Part IV. Products from the oxidation of quinone model compounds, acta chemica scandinavica, Series B: Organic Chem. Biochem., B34, 9, 669-73.
  • Gregory, J., 1989. Fundamentals of flocculation, Crit. Rev. Environ. Contr., 19(3):185-230.
  • Grignon, J., Scallan, A.M., 1980. Effect of ph and neutral salts upon the swelling of cellulose gels, J. App. Polym. Sci., 25(12): 2829-43.
  • Habibi, Y., Vignon, M., 2008. Optimization of cellouronic acid synthesis by TEMPO mediated oxidation of cellulose ııı from sugar beet pulp, Cellulose, 15(1):177- 85. Habibi, Y., Mahrouz, M., Vignon, M.R., 2009. Microfibrillated cellulose from the peel of prickly pear fruits, Food Chem., 115(2):423-9.
  • Hayaka, F., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-Mediated oxidation, Biomacromolecules, 10(1):162-5.
  • Hayashi, N., Kondoi T., Ishihara, M., 2005. Enzymatically produced nano-ordered short elements containing cellulose ıb crystalline domains, Carbohydr. Polym.,61, 191-7.
  • Heıjnesson-Hultén, A., 2006. Method of preparing microfibrillar polysaccharide, US Pat. 20060289132 A1.
  • Henriksson, M., Berglund, L.A., 2007. Structure and properties of cellulose nanocomposite film containing melamine formaldehyde, J. Appl. Polymer Sci., 106(4): 2817-24.
  • Henriksson, M., Henriksson, G., Berglund, L.A., Lindström, T., 2007. An environmentally friendly method for enzyme-assisted cellulose (MFC) Nanofibres, Eur. Polym. J., 43(8):3434- 41. of micro-fibrillated
  • Henriksson, M., Berglund, L.A., Isaksson, P., Lindstöm, T., Nishino, T., 2008. Cellulose nanopaper structures of high toughness, Biomacromolecules, 9(6): 1579-85.
  • Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R., 1983. Microfibrillated Cellulose: Morphology and Accessibility, J. Appl. Polym. Sci., 37: 797-813.
  • Holmbom, B., Stenius, P., 2000. Analytical methods, ın: stenius, p., pakarinen, h. (eds), papermaking science and technology, Book 3 Forest Products Chemistry, edited- by., Fapet Oy, Helsinki-Finland, pp.105-69.
  • Houssine, S., Salajková, M., Zhou, Q., Berglund, L.A., 2010. Mechanical performance tailoring of tough ultra- high porosity foams prepared from cellulose ı nanofiber suspensions, Soft Matter, 6(8):1824-32.
  • Hubbe, M.A., 2006. Bonding between cellulosic fibers in the absence and presence of dry-strength agents a review, BioRes., 1(2): 281-318.
  • Hubbe, M.A., Heitmann, J.A., 2007. Review of factors affecting the release of water from cellulosic fibers during paper manufacture, BioRes., 2(3):500-33.
  • Hult, E.L., Larsson, P.T., Iversen, T., 2001. Cellulose fibril aggregation-an inherent property of kraft pulps, Polymer, 42(8):3309-14.
  • Ioelovıch, M., Leykin, A., 2004. Nanocellulose and ıts application, J.SITA., 6(3):17-24.
  • Ishikawa, H., Ide, S., 1993. Method of producing finely divided fibrous cellulose particles, US Pat. 5269470.
  • Isogai, A., Saito, T., Fukuzumi, H., 2011. TEMPO Oxidized cellulose nanofibers, Nanoscale, 3:71-85.
  • István, S., Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose, 17 (3): 459-94.
  • Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M., 2005. Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A-Mater., 81(6): 1109-12.
  • Iwamoto, S., Nakagaito, A.N., Yano, H., 2007. Nano- Fibrillation ofAppl. Phys. A-Mater., 89(2):461-6.
  • Iwamoto, S., Abe, K., Yano, H., 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics, Biomacromolecules, 9(3):1022-6.
  • Iwamoto, S., Kaii W., Isogaii T., Saitoi T., Isogaii A., Iwatai T.i 2010. comparison study of TEMPO-Analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils, Polym. Degrad. Stabil., 95: 1394-8.
  • Janardhan, S., Sain, M., 2006. Isolation of cellulose microfibrils-an enzymatic approach, BioRes., 1(2):176- 88.
  • Kelsall, R.W., Hamley, I.W., Geoghegan, M., 2005. Nanoscale science and technology, John Wiley & Sons, West Sussex, Pp: 456.
  • Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., 2006. Schmauder, HP., Marsch, S., Nanocelluloses as ınnovative polymers in research and application, adv. Polymer Sci., 205: 49-96.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A., 2011. Nanocelluloses: a new family of nature-based materials, Angewandte 50(24):5438–66. International Edition,
  • Laine, J., Lövgren, L., Stenius, P., Sjöberg, S., 1994. Potentiometric titration of unbleached kraft cellulose fibre surfaces, Colloids Surf. A , 88(2-3): 277-87.
  • Lavoine, N., Desloges, I., Dufresne, A., Bras, J., 2012. Microfibrillated cellulose–ıts barrier properties and applications Carbohydr. Polym., 90(2): 735-64. A review.
  • Lee, S.Y., Chun, S.Jin., Kang, I.A., Park, J.Y., 2009. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films, J. Ind. Eng. Chem., 15(1): 50-5.
  • Leitner, J., Hinterstoisser, B., Wastyn, M., Keckes, J., Gindl, W., 2007. Sugar beet cellulose nanofibril-reinforced composites, Cellulose, 14(5): 419-25.
  • Lima, M.M.D., Borsali, R., 2004. Rodlike cellulose microcrystals: Structure, Properties, and Applications, Macromolecular Rapid Communications, 25(7):771-87.
  • Lindström, T., Winter, L., 1988. Mikrofibrillär cellulosa som meddelande, C159.
  • papperstillverkning, STFI
  • Lindström, T., Ankerfors, M., 2009. NanoCellulose Developments in Scandinavia, 7th International Paper and Coating Chemistry Symposium, Ontario-Canada.
  • Lindy, H., Thielemans, W., 2010. Cellulose nanowhisker aerogels, Green Chemistry, 12(8):1448-53.
  • Liu, S., Yan, Q., Tao, D., Yu, T., Liu, X., 2012. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates, Carbohydr. Polym., 89(2): 551-7.
  • Mabire, F., Audebert, R., Quivoron, C., 1984. Synthesis and solution properties of water soluble copolymers based on acrylamide and quaternary ammonium acrylic comonomer, Polymer, 25(9): 1317-22.
  • Malainine, M.E., Mahrouz, M., Dufresne, A., 2005. Thermoplastic nanocomposites based on cellulose microfibrils from opuntia ficus-indica parenchyma cell, Compos. Sci. Technol., 65(10):1520-6.
  • Marielle, H., Berglund, L.A., Isaksson, P., Lindström, T., Nishino, T., 2008. Cellulose nanopaper structures of high toughness, Biomacromolecules, 9(6):1579-85.
  • Martin, J.J., Cardamone, J.M., Irwin, P.L., Brown, E.M., 2011. Keratin capped silver nanoparticles- synthesis and characterization of a nanomaterial with desirable handling properties, Colloids Surf B Biointerfaces, 88(1): 354-61.
  • Matsuda, Y., 2000. Properties and use of microfibrillated cellulose as papermaking additive, Sen'i Gakkaishi, 56(7):192-6.
  • Matsuda, Y., Hirose, M., Ueno, K., 2001. Super microfibrillated, process for producing the same and coated paper and tinted paper using the same, US Pat. 6214163 B1.
  • Morán, J., Alvarez, V., Cyras, V., Vázquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, 15(1):149-59.
  • Mosbye, J., Moe, S., Laine, J., 2002. The charge and chemical composition of fines in mechanical pulp, Nord. Pulp Paper Res. J., 17(3):352-6.
  • Nakagaito, A.N., Yano, H., 2004. The effect of morphological changes from pulp fiber towards nano- scale fibrillated cellulose on the mechanical properties of highstrength plant fiber based composites, Appl. Phys. A-Mater., 78(4): 547-52.
  • Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., 2009. Optically transparent nanofiber paper, Advanced Materials, 21(16):1595-8.
  • Nogi, M., Yano, H., 2009. Optically transparent nanofiber sheets by deposition of transparent materials: A Concept for a roll-to-roll processing, Appl. Phys. Lett., 94, 233117-1.
  • Olszewska, A., Eronen, P., Johansson, L.S., Malho, J.M., Ankerfors, M., Lindström, T., Ruokolainen, J., Laine, J., Österberg, M., 2011. The behaviour of cationic nanofibrillar cellulose in aqueous media, Cellulose,
  • Orts, W.J., Godbout, L., Marchessault, R.H., Revol, J.F., ordering 1998. suspensions of cellulose microfibrils: A small-angle neutron scattering study, Macromolecules, 31(17): 5717- 25. of liquid crystalline
  • Özmen, N., Çetin, N.S., Narlıoğlu, N., 2013. Kavak (Populus nigra x Populus deltoides) odunundan selüloz nanokristalit eldesi, SDÜ Orman Fakültesi Dergisi, 14:58-63.
  • Pääkko, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T., 2007. Enzymatic hydrolysis combined with mechanical shearing nanoscale cellulose Biomacromolecules, 8(6):1934-41. and gels, fibrils strong
  • Pääkko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindström, T., Berglund, L.A., Ikkala, O., 2008. Long and entangled native cellulose ı nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, 4(12): 2492-9.
  • Peng, Y., Gardner, D., Han, Y., 2012a. Drying cellulose nanofibrils: In search of a suitable method, Cellulose, 19(1): 91-102.
  • Peng, Y., Yousoo, H., Gardner, J.D., 2012b. Spray-Drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution, Wood Fiber Sci., 44(4): 1-14.
  • Picciotto H.A., Wissner-Gross A.D., Lavallee, G., Weiss, P.S. 2007. Arrays of cu21-complexed organic clusters grown on gold nano dots, j. exp. nanosci., 2(1-2):3–11.
  • Poole, C.P.Jr., Owens, F.J., 2003. Introduction to nanotechnology. john wiley & sons, New Jersey, Pp: 400.
  • Qingqing, L., Renneckar, S., 2011. Supramolecular structure characterization of molecularly thin cellulose ı nanoparticles, Biomacromolecules, 12(3):650-9.
  • Rånby, B.G., 1949. Aqueous colloidal solutions of cellulose micelles, Acta Chemica Scandinavica, 3: 649-50.
  • Retulaınen, E., Luukko, K., Fagerholm, K., Pere, J., Laine, J., Paulapuro, H., 2002. Papermaking quality of fines from different pulps-The effect of size, shape and chemical composition, Appita J., 55(6):457-60.
  • Revol, J.F., Godbout, L., Dong, X.M., Gray, D.G., Chanzy, H. Maret, G., 1994. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation, Liquid Crystals, 16(1): 127-34.
  • Roco, M.C.. 2005. International perspective on government nanotechnology funding in 2005, J. Nanopart Res., 7: 707-12.
  • Rojas, O.J., Hubbe, M. A., 2004. The dispersion science of papermaking, J. Dispersion Sci. Technol., 25(6): 713-32.
  • Saito, T., Nishiyama, Y., Putaux, J.L., Vignon, M., Isogai, A., 2006. Homogeneous suspensions of ındividualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-91.
  • Saito, T., Isogai, A., 2007. Preparation of cellulose single microfibrils from native celluloses by TEMPO-mediated oxidation, Cellulose Communications, 14(2): 62-6.
  • Saito, T., Kimura, T., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO mediated oxidation of native cellulose, Biomacromolecules, 8(8): 2485-91.
  • Scallan, A.M., 1974. The structure of the cell wall of wood- a consequence of anisotropic ıntermicrofibrillar bonding wood Sci., 6(3): 266-71.
  • Scallan, A.M., Tigerström, A.C., 1992. Swelling and elasticity of the cell walls of pulp fibers, J. Pulp Pap. Sci., 18(5): 188-93.
  • Serkov, A.T., 2008. Radishevskii, M.B., Fibre Chemistry, 40: 32-6.
  • Shirazi, M., Van de Ven, T.G.M., Garnier, G., 2003. Adsorption of modified starches on pulp fibers, Langmuir, 19(26): 10835-42.
  • Siqueira, G., Bras, J., Dufresne, A, 2010. Luffa cylindrica as a lignocellulosic source of Fiber, microfibrillated cellulose and cellulose nanocrystals, BioRes., 5(2): 727- 40.
  • Siqueira, G., Tadokoro, S.K., Mathew, A.P., Oksman, K., Carrot, applications, In 7th international symposium on natural polymers and composites, Gramado-Brazil.
  • Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A., 2010. Morphological Investigation of nanoparticles obtained from combined mechanical shearing and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 17(6):1147-58.
  • Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., Dufresne, A., 2011. Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 18(1): 57-65.
  • Siro, I., Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A Review, Cellulose, 17(3):459-94.
  • Sjostrom, E., 1989. The origin of charge on cellulosic fibers, Nord. Pulp Paper Res. J., 4(2): 90-3.
  • Spence, K., Venditti, R., Rojas, O., Habibi, Y., Pawlak, J., 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water ınteractions and physical properties for packaging applications, Cellulose, 17(4): 835- 48.
  • Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J., 2010. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical and Bioresour. Technol., 101(15):5961-8. physical properties,
  • Stenius, P., 2000. Macromolecular, Surface, and colloid chemistry, In: Stenius, P.,Pakarinen, H. (eds.), Papermaking science and technology, Book 3 Forest Products Chemistry, Fapet Oy, Helsinki-Finland, pp.170-276.
  • Stone, J.E., Scallan, A.M., Abrahamson, B., 1968. Influence of beating on cell wall swelling and ınternal fibrillation, Svensk Papperstidning, 71(19):687-94.
  • Šukytė, J., Adomavičiūtė, E., Milašius, R., 2010. Investigation of the possibility of forming nanofibres with potato starch, Fibres & Textiles in Eastern Europe, 5:82, 24-7.
  • Sundberg, A., Sundberg, K., Lillandt, C., Holmbom, B., 1996. Determination of hemicelluloses and pectins in wood and pulp fibers by acid methanolysis and gas chromatography, Nord. Pulp Paper Res. J., 11(4):216-9. Swerin,
  • A., Wågberg, L., 1994. Size-Exclusion
  • chromotography for characterization of cationic
  • polyelectrolytes used in papermaking, Nord. Pulp Pap.
  • Res. J., 9(1):18-25.
  • Syverud, K., Stenius, P., 2009. Strength and barrier properties of MFC films, Cellulose, 16(1):75-85.
  • Tan, Z., Nguyen, X., Maurer, K.L., 2007. Chemical activation and refining of southern pine kraft fibers, US Pat. 20070119556 A1.
  • Taniguchi, T., 1996a. Microfibrillation of natural fibrous materials, Journal of the Society of Materials Science (Japan), 45(4):472-3.
  • Taniguchi, T., 1996b. Microfibrillated method of natural fibres, Sen´i Kikai Gakkaishi, 52:119-23.
  • Taniguchi, T., Okamura, K., 1998. New films produced from microfibrillated natural fibres. Polym. Int., 47(3): 291-4. Taniguchi, N.,1974. On the basic concept of nanotechnology, Proc. Intl. Conf. Prod., London, Pp:
  • Teleman, A., Harjunpää, V., Tenkanen, M., Buchert, J., Hausalo, T., Drakenberg, T., Vuorinen, T., 1995. Characterisation enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and spectroscopy, Carbohydr. Res., 272(1):55-71. 13C NMR
  • Turbak, A.F., Snyder, F.W., Sandberg, K.R., 1982. Suspensions containing microfibrillated cellulose, US Pat. 4452721.
  • Turbak, A.F., Snyder, F.W., 1983. Sandberg, K.R., Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J. Appl. Polym. Sci., 37:815-27.
  • Uetani, K., Yano, H., 2010. Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules, 12(2): 348-53.
  • Wågberg, L., Winter, L., Ödberg, L., Lindström, T., 1987. On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials, Colloids and Surfaces, 27(4):163-73.
  • Wågberg, L., Decher, G., Norgren, M., Lindström, T., Ankerfors, M., Axnäs, K., 2008. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes, Langmuir, 24(3):784-95.
  • Walecka, J.A., 1956. An ınvestigation of low degree of substitution carboxymethylcelluloses, (doctoral thesis), Lawrence College, Appelton, Wisconsin, USA.
  • Wang, B., Sain, M., 2007a. Dispersion of soybean stock- based nanofiber in a plastic matrix, polym. Int., 56(4): 538-46.
  • Wang, B., Sain, M., 2007b. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Compos. Sci. Technol., 67(11-12): 2521-7.
  • Wang, B., Sain, M., Oksman, K., 2007. Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. Compos. Mater., 14(2):89-103.
  • Wim, T., Warbey, C.A, Walsh, D.A., 2009. Permselective nanostructured nanowhiskers, Green Chemistry, 11(4):531–7. based on cellulose
  • Winter, L., 1987. On the hamaker constant of cellulose, (licentiate thesis), KTH, Stockholm, Sweden.
  • Wu, N., Hubbe, M.A., Rojas, O.J., Park, S., 2009. Permeation of polyelectrolytes and other solutes into the pore spaces of water-swollen cellulose: A Review, BioRes., 4(3):1222-62.
  • Xhanarı, K., Syverud, K., Chinga-Carrasco, G., Paso, K., Stenius, P., 2011. Structure of nanofibrillated cellulose layers at the o/w ınterface, J.olloid Interface Sci., 356(1): 58-62.
  • Yamashita, Y., Ko, F., Miyake, H., Higashiyama, A., 2007. Establishment of nano fiber preparation technique for nanocomposite, 16th ınternational conference on composite materials, Kyoto-Japan, pp: 1-6.
  • Yano, H., Nakahara, S., 2004. Bio-Composites produced from plant microfiber bundles with a nanometer unit web-like network, J. Mat. Sci., 39(5):1635-8.
  • Young, R.A., 1994. Comparison of the properties of chemical cellulose pulps, Cellulose, 1(2):107-30.
  • Zhao, H.P., Feng, X.Q., Gao, H., 2007. Ultrasonic technique for extracting nanofibres from nature materials, Appl. Phys. Lett., 90, 7, 073112-073112-2.
  • Zimmermann, T., Pöhler, E., Geiger, T., 2004. Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 6(9): 754-61.
  • Zimmermann, T., Bordeanu, N., Strub, E., 2010. Properties of nanofibrillated cellulose from different raw materials and ıts reinforcement potential, Carbohydr. Polym.,
  • Zuluaga, R., Putaux, J.L., Restrepo, A., Mondragon, I., Gañán, P., 2007. Cellulose microfibrils from banana farming cellulose, 14(6):585-92.

Details

Primary Language Turkish
Journal Section Derleme
Authors

Ayhan Tozluoğlu


Yalçın Çöpür


Ömer Özyürek


Sema Çıtlak

Publication Date November 9, 2015
Published in Issue Year 2015, Volume 16, Issue 2

Cite

Bibtex @ { tjf224548, journal = {Turkish Journal of Forestry}, issn = {}, eissn = {2149-3898}, address = {}, publisher = {Isparta Uygulamalı Bilimler Üniversitesi}, year = {2015}, volume = {16}, pages = {203 - 219}, doi = {10.18182/tjf.09718}, title = {Nanoselüloz üretim teknolojisi}, key = {cite}, author = {Tozluoğlu, Ayhan and Çöpür, Yalçın and Özyürek, Ömer and Çıtlak, Sema} }
APA Tozluoğlu, A. , Çöpür, Y. , Özyürek, Ö. & Çıtlak, S. (2015). Nanoselüloz üretim teknolojisi . Turkish Journal of Forestry , 16 (2) , 203-219 . Retrieved from https://dergipark.org.tr/en/pub/tjf/issue/20905/224548
MLA Tozluoğlu, A. , Çöpür, Y. , Özyürek, Ö. , Çıtlak, S. "Nanoselüloz üretim teknolojisi" . Turkish Journal of Forestry 16 (2015 ): 203-219 <https://dergipark.org.tr/en/pub/tjf/issue/20905/224548>
Chicago Tozluoğlu, A. , Çöpür, Y. , Özyürek, Ö. , Çıtlak, S. "Nanoselüloz üretim teknolojisi". Turkish Journal of Forestry 16 (2015 ): 203-219
RIS TY - JOUR T1 - Nanoselüloz üretim teknolojisi AU - Ayhan Tozluoğlu , Yalçın Çöpür , Ömer Özyürek , Sema Çıtlak Y1 - 2015 PY - 2015 N1 - DO - T2 - Turkish Journal of Forestry JF - Journal JO - JOR SP - 203 EP - 219 VL - 16 IS - 2 SN - -2149-3898 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Forestry Nanoselüloz üretim teknolojisi %A Ayhan Tozluoğlu , Yalçın Çöpür , Ömer Özyürek , Sema Çıtlak %T Nanoselüloz üretim teknolojisi %D 2015 %J Turkish Journal of Forestry %P -2149-3898 %V 16 %N 2 %R %U
ISNAD Tozluoğlu, Ayhan , Çöpür, Yalçın , Özyürek, Ömer , Çıtlak, Sema . "Nanoselüloz üretim teknolojisi". Turkish Journal of Forestry 16 / 2 (November 2015): 203-219 .
AMA Tozluoğlu A. , Çöpür Y. , Özyürek Ö. , Çıtlak S. Nanoselüloz üretim teknolojisi. Turkish Journal of Forestry. 2015; 16(2): 203-219.
Vancouver Tozluoğlu A. , Çöpür Y. , Özyürek Ö. , Çıtlak S. Nanoselüloz üretim teknolojisi. Turkish Journal of Forestry. 2015; 16(2): 203-219.
IEEE A. Tozluoğlu , Y. Çöpür , Ö. Özyürek and S. Çıtlak , "Nanoselüloz üretim teknolojisi", Turkish Journal of Forestry, vol. 16, no. 2, pp. 203-219, Nov. 2015, doi:10.18182/tjf.09718