Research Article
BibTex RIS Cite

Early Miocene palaeoclimatic reconstruction of Tunçbilek basin

Year 2019, Volume: 20 Issue: 2, 93 - 100, 04.07.2019
https://doi.org/10.18182/tjf.517228

Abstract

The Tunçbilek-Domaniç Basin (Western Anatolia) is one of the most important Neogene coal deposits of Turkey. The age of the basin is early Miocene (~ 23-19 Ma) based on dating of volcanic units by the Ar/Ar method. Field work was conducted about plant macrofossils in Tunçbilek in 2010. Twenty taxa were identified belonging to two gymnosperm and 18 angiosperm genera. Dicot woody plants belonging to the leaf flora were used to reconstruct palaeoclimate by Multivariate Climate Leaf Analysis Program (CLAMP) based on leaf physiognomy. For reconstruction 18 angiosperm taxa collected from the area in addition 3 taxa determined in previous studies total of 21 taxa were used. The reconstructed values for selected climatic parameters are as follows: mean annual temperature (MAT) 12.1-14.5 °C; warmest month mean temperature (WMMT) 22.5-25.2 °C; coldest month mean temperature (CMMT) 1.6-5.4 °C; length of growing season (GROWSEAS) 6.9-8.3 months; growing season precipitation (GSP) 940-1380 mm; precipitation during the three consecutive wettest months (X3.Wet) 490-790 mm; precipitation during the three consecutive driest months (X3.Dry) 170-230 mm. Overall, CLAMP values expressed as Köppen climate types indicate that the Tunçbilek basin had a warm temperate climate with hot summers (Cfa) during the early Miocene.

References

  • Akgün, F., Kayseri, M.S., Akkiraz, M.S., 2007. Paleoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeography Palaeoclimatology Palaeoecology, 253: 56-90.
  • Akkemik, Ü., Türkoğlu, N., Poole, I., Çiçek, I., Köse, N., Gürgen, G., 2009. Woods of a Miocene petrified Forest near Ankara, Turkey. Turk. J. Agric. For., 33: 89-97.
  • Akkiraz, M.S, Akgün, F., Utescher, T., Wilde, W., Bruch, A.A., Mosbrugger, V., 2012. Palaeoflora and climate of lignite-bearing lower–middle miocene sediments in the Seyitömer and Tunçbilek subbasins, Kütahya province, Northwest Turkey. Turk J Earth Sci., 21:213-235.
  • Arni, P., 1942. Das Braunkohlenbecken von Tavşanlı. Unveröffentl, M. T. A. Bericht, Ankara.
  • Arslan, R., 1979. Kütahya-Tunçbilek sahasındaki sondaj örneklerinin palinoloji incelemesi. Türkiye Jeoloji Bülteni, 22: 135-140.
  • Bailey, I.W., Sinnott, E.W., 1915. A botanical index of Cretaceous and Tertiary climates. Science, 41: 831-834.
  • Bailey, I.W., Sinnott, E.W., 1916. The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3: 24–39.
  • Baş, H., 1986. Domaniç-Tavşanlı-Kütahya-Gediz yöresinin Tersiyer Jeolojisi [Teritary geology of the Domaniç-Tavşanlı-Kütahya-Gediz region]. Geol Eng Turk, 17:11-18.
  • Bouchal, J.M., Güner, H.T., Denk, T., 2018. Middle Miocene climate of southwestern Anatolia from multiple botanical proxies. Climate of the Past, 14: 1427-1440, https://doi.org/10.5194/cp-14-1427-2018.
  • CLAMP, 2019. Climate Leaf Analysis Multivariate Program, http://clamp.ibcas.ac.cn/CLAMP_Home.html, Erişim: 15.01.2019.
  • Climate-Data, 2019. Climate-Data.org, Dünya geneli şehirlerde iklim verileri, Oedheim, https://tr.climate-data.org/asya/ tuerkiye/kuetahya/tuncbilek-537964/, Erişim: 15.01.2019.
  • Çelik, Y., 1999. Domaniç (Kütahya) Neojen Havzasının Sedimantolojisi ve Kömür Potansiyeli. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Denk, T., Grimm, G.W., Grímsson, F., Zetter, R., 2013. Evidence from “Köppen signatures” of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling. Biogeosciences, 10: 7927-7942, https://doi.org/10.5194/bg-10-7927-2013.
  • Denk, T., Güner, H.T., Kvaček, Z., Bouchal, J.M., 2017. The early Miocene flora of Güvem (Central Anatolia, Turkey): a window into early Neogene vegetation and environments in the Eastern Mediterranean. Acta Palaeobotanica, 57(2): 237-338.
  • Friis, E.M., 1985. Angiosperm fruits and seeds from the Middle Miocene og Jutland (Denmark). Biologiske Skrifter, Det Kongelige Danske Videnskabernes Selskab, 24: 1-165.
  • Gemici, Y., Akyol, E., Akgün, F., Seçmen, Ö., 1991. Soma kömür havzası fosil makro ve mikroflorası. Maden Tetkik ve Arama Dergisi, 11: 161-178.
  • Golovneva, L.B., 2000. Palaeogene climates of Spitsbergen, GFF, 122: 62-63.
  • Gökmen, V., Memikoğlu, O., Dağlı, M., Öz, D., Tuncalı, E., 1993. Türkiye Linyit Envanteri, Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.
  • Grimm, G. W., Bouchal, J. M., Denk, T., Potts, A., 2016. Fables and foibles: A critical analysis of the Palaeoflora database and the Coexistence Approach for palaeoclimate reconstruction. Review of Palaeobotany and Palynology, 233: 216–235.
  • Güner, H. T., Bouchal, J. M., Köse, N., Göktaş, F., Mayda, S., Denk, T., 2017. Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macrofossils. Palaeontogr. B, 296: 113-171.
  • Helvacı, C., Ersoy, E.Y., Billor, M.Z., 2017. Stratigraphy and Ar/Ar geochronology of the Miocene lignite bearing Tunçbilek Domaniç Basin, western Anatolia. Int J Earth Sci (Geol Rundsch), 106: 1797-1814.
  • Jacques, F.M.B., Su, T., Spicer, R.A., Xing, Y., Huang, Y., Wang, W., Zhou, Z., 2011. Leaf physiognomy and climate: Are monsoon systems different? Global and Planetary Change, 76: 56-62.
  • Kayseri, M.S., 2010, Oligo-Miocene palynology, palaeobotany, vertebrate, marine faunas, palaeoclimatology and palaeovegetation of the Ören basin (North of the Gökova Gulf), Western Anatolia. PhD thesis, Dokuz Eylül University, İzmir.
  • Kovach, W.L., Spicer, R.A., 1996. Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Palaeoclimates, 1: 125-173.
  • Mantzouka, D., Kvaček, Z., Teodoridis, V., Utescher, T., Tsaparas, N., Karakitsios, V., 2015. A new late Miocene (Tortonian) flora from Gavdos Island in southernmost Greece evaluated in the context of vegetation and climate in the Eastern Mediterranean. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band, 275 (1): 47-81.
  • Mädler, K., Steffens, P., 1979. Neue Blattfloren aus dem Oligozän, Neogen und Pleistozän der Türkei. Geol. Jahrb., 33: 3–33.
  • Mosbrugger, V., Utescher, T., 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol., 134: 61-86.
  • Nebert, K., 1960. Tavşanlı’nın batı ve kuzeyindeki linyit ihtiva eden Neojen sahasının mukayeseli stratigrafisi ve tektoniği [Stratigraphy and tectonics of the lignite-bearing Neogene field in the west and north of Tavşanlı]. Bull Miner Res Explor Turk, 54:7-35.
  • Nebert, K., 1962. Serpantin kitleleri arasında sıkışmış bir Neojen blokuna misal olmak üzere Alabarda (Tavşanlı) linyit bölgesi. M.T.A. Dergisi, 58: 31-37.
  • Öztürk, M.Z., Çetinkaya, G., Aydın, S., 2017. Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Cografya Dergisi, 35: 17-27
  • Palaeoflora, 2019. Data base for palaeoclimate reconstructions using the Coexistence Approach, http://www.palaeoflora.de/, Erişim: 15.01.2019.
  • Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology And Earth System Sciences Discussions, 4(2): 439-447.
  • Quan, C., Liu, Y.-S.C., Utescher, T., 2012. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol., 365-366: 302-311.
  • Spicer, R.A., 2000. Leaf physiognomy and climate change. In: Culver, S.J., Rawson, P. (Eds.), Biotic Response to Global Change: The Last 145 Million Years, Cambridge University Press, Cambridge, pp. 244-264.
  • Spicer, R.A., 2007. Recent and future developments of CLAMP: building on the legacy of Jack A. Wolfe. CFS, Cour. Forsch.inst. Senckenb., 258: 109-118.
  • Spicer, R.A., 2008. Frontiers in palaeobotany: plant fossils and their role in predicting future climate change. The Palaeobotanist, 57: 415-427.
  • Spicer, R.A., Herman, A.B., Kennedy, E.M., 2004. The foliar physiognomic record of climatic conditions during dormancy: CLAMP and the cold month mean temperature. J. Geol., 112: 685-702.
  • Spicer, R.A., Herman, A.B., Kennedy, E.M., 2005. The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters. Palaios, 20: 429-438.
  • Spicer, R.A., Valdes, P.J., Spicer, T.E.V., Craggs, H.J., Srivastava, G., Mehrotra, R.C., Yang, J., 2009. New developments in CLAMP: calibration using global gridded meteorological data. Palaeogeogr. Palaeoclimatol. Palaeoecol., 283: 91-98.
  • ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67: 1167-1179.
  • TKİ, 2012. Türkiye Kömür İşletmleri Kurumu 2012 yılı faaliyet raporu, Ankara, http://www.tki.gov.tr/depo/2017/2012 yillikfaaliyetraporu.pdf, Erişim: 15.01.2019.
  • Türkmenoğlu, A.G., Yavuz-Işık, N., 2008. Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kütahya province, Western Turkey. Applied Clay Science, 42: 63-73.
  • Utescher, T., Bruch, A.A., Erdei, B., François, I., Ivanov, D., Jacques, F.M.B., Kern, A.K., Liu, Y.S.C., Mosbrugger, V., Spicer, R.A., 2014. The Coexistence Approach-Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol., 410: 58-73.
  • Velitzelos, D., Bouchal, J.M., Denk, T., 2014. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palynol., 204: 56-117.
  • Wilf, P., 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23: 373-390.
  • Wolfe, J. A., 1979. Temperature parameters of the humid to mesic forests of eastern Asia and their relation to forests of other regions of the Northern Hemisphere and Australasia. United States Geological Survey Professional Paper, 1106: 1-37.
  • Wolfe, J. A., 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin, 2040: 1-71.
  • Wolfe, J.A., Spicer, R.A., 1999. Fossil leaf character states: multivariate analysis. In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. Geological Society, London, s. 233-239.
  • Yang, J., Wang, Y.F., Spicer, R.A., Mosbrugger, V., Li, C.S., Sun, Q.G., 2007. Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. American Journal of Botany, 94: 599-608.
  • Yang, J., Spicer, R.A., Spicer, T.E.V., Li, C.S., 2011. ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodivers. Palaeoenviron, 91: 163-183.
  • Yavuz–Işık, N., 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia. Geobios, 40: 701-708.
  • Yılmaz, H., 2018. Taxodium Rich. (Ed. Ü. Akkemik) Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları. Orman Genel Müdürlüğü Yayınları, Ankara.

Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu

Year 2019, Volume: 20 Issue: 2, 93 - 100, 04.07.2019
https://doi.org/10.18182/tjf.517228

Abstract

Tunçbilek-Domaniç Havzası (Batı Anadolu) Türkiye’nin Neojen yaşlı en önemli kömür yataklarından bir tanesidir. Havzanın yaşı, volkanitlerin Ar/Ar yöntemiyle yaşlandırılması sonucu bütünüyle Erken Miyosen dönemine (~23-19 Ma) tarihlenir. 2018 yılında Tunçbilek’te bitki makrofosilleri ile ilgili arazi çalışması yapılmıştır. Bitki fosilleri bakımından zengin olan havzadan makrofosil olarak 2 gymnosperm ve 18 angiosperm cinsine ait 20 taksonun varlığı saptanmıştır. Yaprak florasına ait dikotil odunsu bitkilerin, yaprak fizyonomisi temel alınarak “Çok Değişkenli İklim Yaprak Analiz Programı (CLAMP)” ile paleoiklim rökonstrüksiyonu gerçekleştirilmiştir. Yapılan rökonstrüksiyonda alandan toplanan 18 angiosperm taksonuna ek olarak önceki çalışmalarda belirlenen 3 taksonla birlikte toplam 21 takson kullanılmıştır. İklimsel parametrelere ait değerler: yıllık ortalama sıcaklık (MAT) 12.1-14.5 °C; en sıcak ayın ortalama sıcaklığı (WMMT) 22.5–25.1 °C; en soğuk ayın ortalama sıcaklığı (CMMT) 1.6–5.4 °C; vejetasyon dönemi (GROWSEAS) 6.9-8.3 ay; vejetasyon dönemi yağış (GSP) 940-1380 mm; en nemli üç ayın yağışı (X3.Wet) 490-790 mm; en kurak üç ayın yağışı (X3.Dry) 170-230 mm. Genel olarak, CLAMP değerleri ve bunların Köppen iklim tipleri ile ilişkilendirilmesi Tunçbilek havzasının erken Miyosen boyunca her mevsim yağışlı, yazları sıcak (Cfa) ılıman bir iklime sahip olduğunu gösteriyor.

References

  • Akgün, F., Kayseri, M.S., Akkiraz, M.S., 2007. Paleoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in Western and Central Anatolia (Turkey). Palaeogeography Palaeoclimatology Palaeoecology, 253: 56-90.
  • Akkemik, Ü., Türkoğlu, N., Poole, I., Çiçek, I., Köse, N., Gürgen, G., 2009. Woods of a Miocene petrified Forest near Ankara, Turkey. Turk. J. Agric. For., 33: 89-97.
  • Akkiraz, M.S, Akgün, F., Utescher, T., Wilde, W., Bruch, A.A., Mosbrugger, V., 2012. Palaeoflora and climate of lignite-bearing lower–middle miocene sediments in the Seyitömer and Tunçbilek subbasins, Kütahya province, Northwest Turkey. Turk J Earth Sci., 21:213-235.
  • Arni, P., 1942. Das Braunkohlenbecken von Tavşanlı. Unveröffentl, M. T. A. Bericht, Ankara.
  • Arslan, R., 1979. Kütahya-Tunçbilek sahasındaki sondaj örneklerinin palinoloji incelemesi. Türkiye Jeoloji Bülteni, 22: 135-140.
  • Bailey, I.W., Sinnott, E.W., 1915. A botanical index of Cretaceous and Tertiary climates. Science, 41: 831-834.
  • Bailey, I.W., Sinnott, E.W., 1916. The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3: 24–39.
  • Baş, H., 1986. Domaniç-Tavşanlı-Kütahya-Gediz yöresinin Tersiyer Jeolojisi [Teritary geology of the Domaniç-Tavşanlı-Kütahya-Gediz region]. Geol Eng Turk, 17:11-18.
  • Bouchal, J.M., Güner, H.T., Denk, T., 2018. Middle Miocene climate of southwestern Anatolia from multiple botanical proxies. Climate of the Past, 14: 1427-1440, https://doi.org/10.5194/cp-14-1427-2018.
  • CLAMP, 2019. Climate Leaf Analysis Multivariate Program, http://clamp.ibcas.ac.cn/CLAMP_Home.html, Erişim: 15.01.2019.
  • Climate-Data, 2019. Climate-Data.org, Dünya geneli şehirlerde iklim verileri, Oedheim, https://tr.climate-data.org/asya/ tuerkiye/kuetahya/tuncbilek-537964/, Erişim: 15.01.2019.
  • Çelik, Y., 1999. Domaniç (Kütahya) Neojen Havzasının Sedimantolojisi ve Kömür Potansiyeli. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Denk, T., Grimm, G.W., Grímsson, F., Zetter, R., 2013. Evidence from “Köppen signatures” of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling. Biogeosciences, 10: 7927-7942, https://doi.org/10.5194/bg-10-7927-2013.
  • Denk, T., Güner, H.T., Kvaček, Z., Bouchal, J.M., 2017. The early Miocene flora of Güvem (Central Anatolia, Turkey): a window into early Neogene vegetation and environments in the Eastern Mediterranean. Acta Palaeobotanica, 57(2): 237-338.
  • Friis, E.M., 1985. Angiosperm fruits and seeds from the Middle Miocene og Jutland (Denmark). Biologiske Skrifter, Det Kongelige Danske Videnskabernes Selskab, 24: 1-165.
  • Gemici, Y., Akyol, E., Akgün, F., Seçmen, Ö., 1991. Soma kömür havzası fosil makro ve mikroflorası. Maden Tetkik ve Arama Dergisi, 11: 161-178.
  • Golovneva, L.B., 2000. Palaeogene climates of Spitsbergen, GFF, 122: 62-63.
  • Gökmen, V., Memikoğlu, O., Dağlı, M., Öz, D., Tuncalı, E., 1993. Türkiye Linyit Envanteri, Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.
  • Grimm, G. W., Bouchal, J. M., Denk, T., Potts, A., 2016. Fables and foibles: A critical analysis of the Palaeoflora database and the Coexistence Approach for palaeoclimate reconstruction. Review of Palaeobotany and Palynology, 233: 216–235.
  • Güner, H. T., Bouchal, J. M., Köse, N., Göktaş, F., Mayda, S., Denk, T., 2017. Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macrofossils. Palaeontogr. B, 296: 113-171.
  • Helvacı, C., Ersoy, E.Y., Billor, M.Z., 2017. Stratigraphy and Ar/Ar geochronology of the Miocene lignite bearing Tunçbilek Domaniç Basin, western Anatolia. Int J Earth Sci (Geol Rundsch), 106: 1797-1814.
  • Jacques, F.M.B., Su, T., Spicer, R.A., Xing, Y., Huang, Y., Wang, W., Zhou, Z., 2011. Leaf physiognomy and climate: Are monsoon systems different? Global and Planetary Change, 76: 56-62.
  • Kayseri, M.S., 2010, Oligo-Miocene palynology, palaeobotany, vertebrate, marine faunas, palaeoclimatology and palaeovegetation of the Ören basin (North of the Gökova Gulf), Western Anatolia. PhD thesis, Dokuz Eylül University, İzmir.
  • Kovach, W.L., Spicer, R.A., 1996. Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Palaeoclimates, 1: 125-173.
  • Mantzouka, D., Kvaček, Z., Teodoridis, V., Utescher, T., Tsaparas, N., Karakitsios, V., 2015. A new late Miocene (Tortonian) flora from Gavdos Island in southernmost Greece evaluated in the context of vegetation and climate in the Eastern Mediterranean. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen Band, 275 (1): 47-81.
  • Mädler, K., Steffens, P., 1979. Neue Blattfloren aus dem Oligozän, Neogen und Pleistozän der Türkei. Geol. Jahrb., 33: 3–33.
  • Mosbrugger, V., Utescher, T., 1997. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol., 134: 61-86.
  • Nebert, K., 1960. Tavşanlı’nın batı ve kuzeyindeki linyit ihtiva eden Neojen sahasının mukayeseli stratigrafisi ve tektoniği [Stratigraphy and tectonics of the lignite-bearing Neogene field in the west and north of Tavşanlı]. Bull Miner Res Explor Turk, 54:7-35.
  • Nebert, K., 1962. Serpantin kitleleri arasında sıkışmış bir Neojen blokuna misal olmak üzere Alabarda (Tavşanlı) linyit bölgesi. M.T.A. Dergisi, 58: 31-37.
  • Öztürk, M.Z., Çetinkaya, G., Aydın, S., 2017. Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Cografya Dergisi, 35: 17-27
  • Palaeoflora, 2019. Data base for palaeoclimate reconstructions using the Coexistence Approach, http://www.palaeoflora.de/, Erişim: 15.01.2019.
  • Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology And Earth System Sciences Discussions, 4(2): 439-447.
  • Quan, C., Liu, Y.-S.C., Utescher, T., 2012. Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol., 365-366: 302-311.
  • Spicer, R.A., 2000. Leaf physiognomy and climate change. In: Culver, S.J., Rawson, P. (Eds.), Biotic Response to Global Change: The Last 145 Million Years, Cambridge University Press, Cambridge, pp. 244-264.
  • Spicer, R.A., 2007. Recent and future developments of CLAMP: building on the legacy of Jack A. Wolfe. CFS, Cour. Forsch.inst. Senckenb., 258: 109-118.
  • Spicer, R.A., 2008. Frontiers in palaeobotany: plant fossils and their role in predicting future climate change. The Palaeobotanist, 57: 415-427.
  • Spicer, R.A., Herman, A.B., Kennedy, E.M., 2004. The foliar physiognomic record of climatic conditions during dormancy: CLAMP and the cold month mean temperature. J. Geol., 112: 685-702.
  • Spicer, R.A., Herman, A.B., Kennedy, E.M., 2005. The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters. Palaios, 20: 429-438.
  • Spicer, R.A., Valdes, P.J., Spicer, T.E.V., Craggs, H.J., Srivastava, G., Mehrotra, R.C., Yang, J., 2009. New developments in CLAMP: calibration using global gridded meteorological data. Palaeogeogr. Palaeoclimatol. Palaeoecol., 283: 91-98.
  • ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67: 1167-1179.
  • TKİ, 2012. Türkiye Kömür İşletmleri Kurumu 2012 yılı faaliyet raporu, Ankara, http://www.tki.gov.tr/depo/2017/2012 yillikfaaliyetraporu.pdf, Erişim: 15.01.2019.
  • Türkmenoğlu, A.G., Yavuz-Işık, N., 2008. Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kütahya province, Western Turkey. Applied Clay Science, 42: 63-73.
  • Utescher, T., Bruch, A.A., Erdei, B., François, I., Ivanov, D., Jacques, F.M.B., Kern, A.K., Liu, Y.S.C., Mosbrugger, V., Spicer, R.A., 2014. The Coexistence Approach-Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol., 410: 58-73.
  • Velitzelos, D., Bouchal, J.M., Denk, T., 2014. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palynol., 204: 56-117.
  • Wilf, P., 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23: 373-390.
  • Wolfe, J. A., 1979. Temperature parameters of the humid to mesic forests of eastern Asia and their relation to forests of other regions of the Northern Hemisphere and Australasia. United States Geological Survey Professional Paper, 1106: 1-37.
  • Wolfe, J. A., 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin, 2040: 1-71.
  • Wolfe, J.A., Spicer, R.A., 1999. Fossil leaf character states: multivariate analysis. In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. Geological Society, London, s. 233-239.
  • Yang, J., Wang, Y.F., Spicer, R.A., Mosbrugger, V., Li, C.S., Sun, Q.G., 2007. Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. American Journal of Botany, 94: 599-608.
  • Yang, J., Spicer, R.A., Spicer, T.E.V., Li, C.S., 2011. ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodivers. Palaeoenviron, 91: 163-183.
  • Yavuz–Işık, N., 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia. Geobios, 40: 701-708.
  • Yılmaz, H., 2018. Taxodium Rich. (Ed. Ü. Akkemik) Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları. Orman Genel Müdürlüğü Yayınları, Ankara.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Hüseyin Tuncay Güner 0000-0001-9742-1319

Publication Date July 4, 2019
Acceptance Date April 24, 2019
Published in Issue Year 2019 Volume: 20 Issue: 2

Cite

APA Güner, H. T. (2019). Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu. Turkish Journal of Forestry, 20(2), 93-100. https://doi.org/10.18182/tjf.517228
AMA Güner HT. Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu. Turkish Journal of Forestry. July 2019;20(2):93-100. doi:10.18182/tjf.517228
Chicago Güner, Hüseyin Tuncay. “Tunçbilek Havzası Erken Miyosen Paleoiklimsel rekonstrüksiyonu”. Turkish Journal of Forestry 20, no. 2 (July 2019): 93-100. https://doi.org/10.18182/tjf.517228.
EndNote Güner HT (July 1, 2019) Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu. Turkish Journal of Forestry 20 2 93–100.
IEEE H. T. Güner, “Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu”, Turkish Journal of Forestry, vol. 20, no. 2, pp. 93–100, 2019, doi: 10.18182/tjf.517228.
ISNAD Güner, Hüseyin Tuncay. “Tunçbilek Havzası Erken Miyosen Paleoiklimsel rekonstrüksiyonu”. Turkish Journal of Forestry 20/2 (July 2019), 93-100. https://doi.org/10.18182/tjf.517228.
JAMA Güner HT. Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu. Turkish Journal of Forestry. 2019;20:93–100.
MLA Güner, Hüseyin Tuncay. “Tunçbilek Havzası Erken Miyosen Paleoiklimsel rekonstrüksiyonu”. Turkish Journal of Forestry, vol. 20, no. 2, 2019, pp. 93-100, doi:10.18182/tjf.517228.
Vancouver Güner HT. Tunçbilek havzası erken Miyosen paleoiklimsel rekonstrüksiyonu. Turkish Journal of Forestry. 2019;20(2):93-100.