Research Article
BibTex RIS Cite

Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye

Year 2022, Volume: 23 Issue: 4, 268 - 277, 29.12.2022
https://doi.org/10.18182/tjf.1117835

Abstract

The objective of this study is to investigate the effects of representative land use types and land cover (LUT/LC) of heavily deforested areas on soil properties in semi-arid region of Türkiye. Some of the soil properties have been measured on a grid with a 50 m sampling distance on the top-soil (0-15 cm depth). Data has been analyzed by using Ordinary Kriging/Spherical geostatistical model. Results indicated that the soil properties differed in terms of organic carbon (SOC), pH, bulk density, and the amount of sand, depending on the land uses in the study areas. The SOC concentration of top-soil layers has referred a significant difference (P<0.05) according to the land use type. Top-soil SOC concentrations in the four LUTLCs have been in the following order: cultivated areas < grasslands < Scotch pine stands = Uludağ fir stands. The impacts of LUTLC change on SOC and soil properties have not been restricted to the soil surface; however, relative changes have equally been high in the sub-soil, stressing the importance of sufficiently deep sampling. Furthermore, it has been determined that some physical and chemical characteristics of the natural forest soil have been significantly changed after long term and continuous cultivation. SOC loss is remarkable under the land use conversion while cropland has considerable potential to sequester SOC.

Supporting Institution

TÜBİTAK

Project Number

TÜBİTAK 2209-A, 1919B011502795

Thanks

This research was supported by The Scientific and Technological Research Council of Turkey, University Students Domestic Research Projects (TÜBİTAK 2209-A, 1919B011502795).

References

  • Albaladejo, J., Ortiz, R., Garcia-Franco, N., Navarro, A.R., Almagro, M., Pİntado, J.G., Mena, M.M., 2013. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 19(2): 702-715. https://doi.org/10.1007/s11368-012-0617-7.
  • Assefa, D., Rewald, B., Sandén, H., Rosinger, C., Abiyu, A., Yitaferu, B., Godbold D., 2017. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena, 153: 89-99. https://doi.org/10.1016/j.catena.2017.02.003.
  • Barua, S.K., Haque N.S., 2013. Soil characteristics and carbon sequestration potentials of vegetation in the degraded hills of Chittagong, Bangladesh. Land Degradation & Development, 24: 63-71. https://doi.org/10.1002/ldr.1107.
  • Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1): 10-21. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x.
  • Berger, P.M., Yoksoulian, L., Freiburg J.T., 2019. Carbon sequestration at the Illinois Basin-Decatur Project: Experimental results and geochemical simulations of storage. Environmental Earth Sciences, 78: 646. https://doi.org/10.1007/s12665-019-8659-4.
  • Bewket, W., Stroosnijder, L., 2003. Effects of agroecological land use succession on soil properties in Chemoga watershed, Blue Nile basin, Ethiopia. Geoderma, 111: 85-98. https://doi.org/10.1016/S0016-7061(02)00255-0.
  • Binyong L., Haiping T., Liheng W., Li Q., Zhou C., 2012. Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environmental Earth Science, 65: 195-202. https://doi.org/10.1007/s12665-011-1082-0.
  • Bird, M., Santrùcková, H., Lloyd, J., Veenendaal, E., 2001. Global soil organic carbon pool. In: Global Biogeochemical Cycles in the Climate System (Ed: Schulze, E.D., Heimann, M., Harrison, S., Holland, E., Lloyd, J., Prentice, I.C., Schimel, D.), Global Biogeochemical Cycles in the Climate System, Academic Press, USA, pp. 185-199.
  • Blake, G.R., Hartge K.H., 1986. Bulk density. In: Methods of Soil Analysis, Part 1-Physical and Mineralogical Methods, 2nd Edition (Ed: Klute, A.), American Society of Agronomy-Soil Science Society of America, Madison, pp. 363-382.
  • Boix-Fayos, C., Joris de Vente, J.D., Albaladejo, J., Martinez-Mena, M., 2009. Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agriculture, Ecosystems and Environment, 133: 75-85. https://doi.org/10.1016/j.agee.2009.05.013.
  • Bouyoucos, G.J., 1951. A Recalibration of the hydrometer for making mechanical analysis of soil. Agronomy Journal, 43: 434-438. https://doi.org/10.2134/agronj1951.00021962004300090005x
  • Bremner, J.M., 1996. Nitrogen total. In: Methods of Soil Analysis Part 3: Chemical Methods (Ed: (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.), SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin, USA.
  • Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., Andreev, A., 2002. Carbon cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Global Biogeochemical Cycles, 16: 1139. https://doi.org/10.1029/2001GB001662.
  • Chatterjee, N., Nair, P.K.R., Saptarshi Chakraborty, S., Vimala, D., Nair, V.D., 2018. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agro ecological regions: A meta-analysis, Agriculture. Ecosystems & Environment, 266: 55-67. https://doi.org/ 10.1016/j.agee.2018.07.014.
  • Deng, L., Liu, G.B., Shangguan, Z.P., 2014. Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’Program: A synthesis. Global Change Biology, 20(11): 3544-3556. https://doi.org/10.1111/gcb.12508.
  • Doğan, U., 2002. Subsidence dolines formed by gypsum karstification at the east of Çankırı. Gazi University, Journal of Gazi Education Faculty, 22(1): 67-82.
  • Don, A., Schumacher, J., Freibauer, A., 2011. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Global Change Biology, 17(4): 1658-1670. https://doi.org/ 10.1111/j.1365-2486.2010.02336.x.
  • Fang, X., Xue, Z., Li, B., An, S., 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena, 88: 6-13. https://doi.org/10.1016/j.catena.2011.07.012.
  • FAO and ITPS., 2018. Global Soil Organic Carbon Map (GSOC map) Technical Report. Food and Agriculture Organization of the United Nations, Technical Report (V1.2.0). Rome. https://doi.org/10.4060/ca7597en.
  • FAO 2017a. Soil Organic Carbon: The Hidden Potential. Food and Agriculture Organization of the United Nations Rome, Italy. ISBN 978-92-5-109681-9
  • FAO, 2017b. Global Soil Organic Carbon Database (at 30 arcsec). Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.4060/ca7597en
  • Francaviglia, R., Renzi, G., Ledda, L., Benedetti, A., 2017. Organic carbon pools and soil biological fertility are affected by land use intensity in Mediterranean ecosystems of Sardinia, Italy. Science of the Total Environment, 599-600: 789-796. 10.1016/j.scitotenv.2017.05.021.
  • Friedlingstein, P., Jones, C.D., Prentice, I.C., Woodward, F.I., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015-2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x.
  • GDF, 1995a. 1995-2005, Çankırı Forest Management Unit Plan, General Directorate of Forestry (GDF), Regional Directorate of Ankara, Forest District Directorate of Çankırı.
  • GDF, 1995b. 1995-2005, Yapraklı Forest Management Unit Plan, General Directorate of Forestry (GDF), Regional Directorate of Ankara, Forest District Directorate of Çankırı.
  • Göl, C., Yılmaz, H., 2017. The effect of land use type/ land cover and aspect on soil properties at the Gökdere catchment in Northwestern Turkey. Šumarski List, 141: 9-10. https://doi.org/10.31298/sl.141.9-10.2.
  • Göl, C., 2009. The effect of land use change on soil properties and organic carbon at Dağdamı river catchment in Turkey. Journal of Environmental Biology, 30(5): 825-830.
  • Göl, C., Bulut, S., Bolat, F., 2017. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134: 85-91. https://doi.org/10.1016/j.jafrearsci.2017.06.014.
  • Govers, G., Merckx, R., Van Oost, K., Wesemael, B.V., 2013. Managing Soil Organic Carbon for Global Benefits: A STAP Technical Report. Global Environment Facility, Washington, D.C.
  • Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: A meta-analysis. Global Change Biology, 8(4): 345-360. https://doi.org/10.1046/j.1354-1013.2002.00486.x.
  • Harris, N.L., Brown, S., Hagen, S.C., 2012. Baseline map of carbon emissions from deforestation in tropical regions. Science, 336(6088): 1573-1576. 10.1126/science.1217962.
  • Hoffmann, U., Yair, A., Hikel, H., Kuhn, N.J., 2012. Soil organic carbon in the rocky desert of northern Negev (Israel). Journal of Soils and Sediments, 12(6): 811-825. https://doi.org/ 10.1007/s11368-012-0499-8 Houghton, R.A., Goodale C.L., 2004. Effects of land-use change on the carbon balance of terrestrial ecosystems. In: Ecosystems and Land Use Change (Ed: De Fries, R., Asner, G., Houghton, R.), American Geophysical Union, Washington DC.
  • Houghton, R.A., Nassikas, A.A., 2018. Negative emissions from stopping deforestation and forest degradation, globally. Global Change Biology, 24(1): 350-359. https://doi.org/ 10.1111/gcb.13876.
  • IPCC., 2013. Summary for policy makers. In: Stocker, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ed: Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Jeloudar, Z.J., Shabanzadeh, S., Kavian, A., 2014. Spatial Variability of Soil Features Affected by Land use Type using Geostatistics. Ecopersia, 2(3): 667-679. http://ecopersia .modares.ac.ir/article-24-368-en.html.
  • Jiang, P., Cheng, L., Li, M., Zhao, R., Duan, Y., 2015. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle Heihe River basin, China. Science of the Total Environment, 506-507: 259-271. https://doi.org/10.1016/j.scitotenv.2014.11.004.
  • Köchy, M., Hiederer, R.,, Freibauer, A., 2015. Global distribution of soil organic carbon-Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1): 351-365. https://doi.org/10.5194/soil-1-351-2015.
  • Kooch, Y., Noghre, N., 2020. Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193: 104621. https://doi.org/10.1016/j.catena.2020.104621.
  • Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1627. 10.1126/science.1097396.
  • Lal. R., Kimble, J.M., Follett, R.F., Cole, C.V., 1998. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Ann Arbor Press, Chelsea.
  • Li, Y., Zhao, X., Chen, Y., Luo, Y., Wang, S., 2012. Effects of grazing exclusion on carbon sequestration and the associated vegetation and soil characteristics at a semi-arid decertified sandy site in Inner Mongolia, northern China. Canadian Journal of Soil Science, 92(6): 807-819. https://doi.org/ 10.4141/cjss2012-030.
  • Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., Li, L., 2020. Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecological Indicators, 110: 105925. https://doi.org/10.1016/j.ecolind.2019.105925.
  • Liu, X., Yang, T., Wang, Q., Farong Huang, F., Lanhai Li, L., 2017. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Science of the Total Environment, 618: 1658-1664. https://doi.org/10.1016/j.scitotenv.2017.10.009.
  • Lozano-García, B., Parras-Alcántara, L., 2014. Variation in soil organic carbon and nitrogen stocks along a top sequence in a traditional Mediterranean olive grove. Land Degradation and Development, 25(3): 297-304. https://doi.org/10.1002/ldr.2284.
  • Mukhopadhyay, S., Masto, R.E., Cerdà, A., Ram, L.C., 2015. Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena, 141: 100-108. https://doi.org/10.1016/j.catena.2016.02.023.
  • Nelson, D.W., Sommers, L.E., 1996. Methods of Soil Analysis. Part 3. Chemical Methods. (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.), Soil Science of America and American Society of Agronomy, SSSA Book Series Madison, USA. Olofsson, J., Hickler, T., 2008. Effects of human land-use on the global carbon cycle during the last 6,000 years. Vegetation History and Archaeobotany, 17(5): 605-615. https://doi.org/ 10.1007/s00334-007-0126-6.
  • Olson, K.R., Al-Kaisi, M.M., 2015. The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena, 125: 33-37. https://doi.org/10.1016/j.catena.2014.10.004.
  • Poeplau, C., Don, A., Vesterdal, L., Leifield, J., Van Wesemael, B., Schumacher, J., Gensior, A., 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Global Change Biology, 17(7): 2415-2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x.
  • Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramill, V.J., Kheshgi, H.S., LeQuéré, C., Scholes, R.J., Wallace Douglas, W.R., 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Ed: Houghton et al.). Cambridge University Press, Cambridge, UK, pp. 185-237.
  • Pribyl, D.W., 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3-4): 75-83. https://doi.org/10.1016/j. geoderma.2010.02.003.
  • Pugh, T., Arneth, A., Olin, S., Ahlström, A., Bayer, A., Goldewijk, K.K., Lindeskog, M., Schurgers, G., 2015. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters, 10(12): 124008. 10.1088/1748-9326/10/12/124008.
  • Quadrelli, R., Peterson, S., 2007. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11): 5938-5952. https://doi.org/10.1016/ j.enpol.2007.07.001.
  • Quinton, J.N., Govers, G., Van Oost, K. & Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5): 311-314. https://doi.org/10.1038/ngeo838.
  • Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. Part 3. Chemical Methods (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.), Soil Science of America and American Society of Agronomy. SSSA Book Series, Madison-USA, pp. 417-437. https://doi.org/10.2136/sssabookser5.3.
  • Richard, H.L., Donald, L.S., 1996. Carbonate and gypsum. In: Methods of Soil Analysis. Part 3. Chemical Methods (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.) Soil Science of America and American Society of Agronomy. SSSA Book Series, Madison-USA, pp. 437-475.
  • Robertson, F., Armstrong, R., Partington, D., Perris, R., Oliver, I., Aumann, C., Crawford, D., Rees, D., 2015. Effect of cropping practices on soil organic carbon: evidence from long-term field experiments in Victoria, Australia. Soil Research, 53: 636-646. http://dx.doi.org/10.1071/SR14227.
  • Scharlemann, J.P.W., Tanner, E., Kapos, V., 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1): 81-91. https://doi.org/10.4155/cmt.13.77.
  • Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., Saia, S., 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modeling. Science of the Total Environment, 601-602: 821-832. 10.1016/j.scitotenv. 2017.05.239.
  • Schulp, C.J.E., Verburg, P.H., 2009. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture, Ecosystems & Environment, 133(1-2): 86-97. https://doi.org/10.1016/ j.agee.2009.05.005.
  • Searchinger, T.D., Wirsenius, S., Beringer, T., Dumas, P., 2018. Assessing the efficiency of changes in land use for mitigating climate change. Nature, 564: 249-253. https://doi.org/ 10.1038/s41586-018-0757-z.
  • Seeber, J., Seeber, G.U.H., 2005. Effects of land-use changes on humus forms on alpine pastureland (Central Alps, Tyrol). Geoderma, 124(3-4): 215-222. https://doi.org/10.1016/ j.geoderma.2004.05.002.
  • Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., PiaoS.L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C.D., Prentice, I.C., Woodward, F.I., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015-2039.
  • Stumpf, F., Keller, A., Schmidt, K., Mayr, A., Gubler, A., Schaepman, M., 2018. Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems. Agriculture, Ecosystems and Environment, 258: 129-142. https://doi.org/10.1016/j.agee.2018.02.012.
  • Thompson, I.D., Guariguata, M.R., Okabe, K., Bahamondez, C., Nasi, R., Heymell V., Sabogal, C., 2013. An operational framework for defining and monitoring forest degradation. Ecology and Society, 18(2): 20. https://doi.org/10.5751/ES-05443-180220.
  • Vagen, T.G., Lal, R., Singh, B.R., 2005. Soil carbon sequestration in sub-Saharan Africa: A review. Land Degradation & Development, 16(1): 53-71. https://doi.org/10.1002/ldr.644.
  • Wasak, K., Drewnik, M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland – a case study from the Tatra Mountains (Poland). Solid Earth Discussions, 7(2): 1577-1610. https://doi.org/ 10.5194/se-6-1103-2015.
  • Wei, X., Shao, M., Gale, W., Li, L., 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4(1): 1-6. https://doi.org/ 10.1038/srep04062.
  • Wiesmeier, M, Lützow, M., Spörlein, P., 2015. Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil and Tillage Research, 146(B): 296-302. https://doi.org/10.1016/j.still.2014.10.003.
  • Wu, H.B., Guo, Z.T., Peng, C.H., 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9: 305-315. 10.1046/j.1365-2486.2003.00590.x.
  • Yazdanshenas, H., Tehrani, M.S.G., Ajirloo, M.K., Tarnian, F., 2021. Changes in soil organic carbon across an atmospheric CO2 gradient under natural and artificial vegetation of semiarid lands. Environmental Earth Science, 80(2): 1-10. https://doi.org/10.1007/s12665-020-09319-2.
  • Zhou, Y., Hartemink, A.E., Shi, Z., Liang, Z., Lu, Y., 2019. Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 64: 1230-1238. 10.1016/j.scitotenv.2018.08.016.
  • Zhou, Z., Wang, C., Lou, Y., 2018. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecology Biogeography, 27(1): 110-124. https://doi.org/10.1111/geb.12663.

Türkiye’nin yarı kurak bir bölgesinde farklı arazi kullanımları altında toprak organik karbon miktarı ve bazı toprak özelliklerinin değerlendirilmesi

Year 2022, Volume: 23 Issue: 4, 268 - 277, 29.12.2022
https://doi.org/10.18182/tjf.1117835

Abstract

Bu çalışmada Türkiye'nin yarı kurak bir bölgesindeki birbirine komşu farklı Arazi Kullanım Türlerinin ve Arazi Örtüsünün (AKT/AÖ) toprak özellikleri üzerindeki etkileri araştırılmıştır. Toprak özellikleri üst toprakta (0-15 cm derinlik) 50 m örnekleme mesafesine sahip bir grid sistemine göre ölçülmüştür. Veriler, Ordinary Kriging/Spherical jeoistatistiksel model kullanılarak analiz edilmiştir. Araştırma alanında Toprak Organik Karbonu (TOK), pH, hacim ağırlığı ve kum miktarının AKT/AÖ’ne göre istatistiksel bakımdan farklı olduğu belirlenmiştir. Üst topraklar TOK depolama kapasitesi bakımından, AKT/AÖ’ye göre istatistiksel bakımdan önemli (P<0.05) fark göstermiştir. Dört farklı AKT/AÖ’deki TOK depolama sıralaması tarım < mera < sarıçam ormanı = Uludağ göknarı ormanı şeklinde olmuştur. AKT/AÖ değişimi sadece üst topraklarda değil, aynı zamanda alt toprakların özelliklerinde önemli ölçüde değiştirmektedir. Uzun süreli tarımsal faaliyet etkisi ile doğal orman topraklarının bazı fiziksel ve kimyasal özelliklerinin önemli ölçüde değiştiği tespit edilmiştir. AKT/AÖ değişimi TOK depolama kapasitesi bakımından önemli aynı zamanda tarım arazilerini depolama kapasitesinin artırılması da gerekmektedir.

Project Number

TÜBİTAK 2209-A, 1919B011502795

References

  • Albaladejo, J., Ortiz, R., Garcia-Franco, N., Navarro, A.R., Almagro, M., Pİntado, J.G., Mena, M.M., 2013. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 19(2): 702-715. https://doi.org/10.1007/s11368-012-0617-7.
  • Assefa, D., Rewald, B., Sandén, H., Rosinger, C., Abiyu, A., Yitaferu, B., Godbold D., 2017. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena, 153: 89-99. https://doi.org/10.1016/j.catena.2017.02.003.
  • Barua, S.K., Haque N.S., 2013. Soil characteristics and carbon sequestration potentials of vegetation in the degraded hills of Chittagong, Bangladesh. Land Degradation & Development, 24: 63-71. https://doi.org/10.1002/ldr.1107.
  • Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1): 10-21. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x.
  • Berger, P.M., Yoksoulian, L., Freiburg J.T., 2019. Carbon sequestration at the Illinois Basin-Decatur Project: Experimental results and geochemical simulations of storage. Environmental Earth Sciences, 78: 646. https://doi.org/10.1007/s12665-019-8659-4.
  • Bewket, W., Stroosnijder, L., 2003. Effects of agroecological land use succession on soil properties in Chemoga watershed, Blue Nile basin, Ethiopia. Geoderma, 111: 85-98. https://doi.org/10.1016/S0016-7061(02)00255-0.
  • Binyong L., Haiping T., Liheng W., Li Q., Zhou C., 2012. Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environmental Earth Science, 65: 195-202. https://doi.org/10.1007/s12665-011-1082-0.
  • Bird, M., Santrùcková, H., Lloyd, J., Veenendaal, E., 2001. Global soil organic carbon pool. In: Global Biogeochemical Cycles in the Climate System (Ed: Schulze, E.D., Heimann, M., Harrison, S., Holland, E., Lloyd, J., Prentice, I.C., Schimel, D.), Global Biogeochemical Cycles in the Climate System, Academic Press, USA, pp. 185-199.
  • Blake, G.R., Hartge K.H., 1986. Bulk density. In: Methods of Soil Analysis, Part 1-Physical and Mineralogical Methods, 2nd Edition (Ed: Klute, A.), American Society of Agronomy-Soil Science Society of America, Madison, pp. 363-382.
  • Boix-Fayos, C., Joris de Vente, J.D., Albaladejo, J., Martinez-Mena, M., 2009. Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agriculture, Ecosystems and Environment, 133: 75-85. https://doi.org/10.1016/j.agee.2009.05.013.
  • Bouyoucos, G.J., 1951. A Recalibration of the hydrometer for making mechanical analysis of soil. Agronomy Journal, 43: 434-438. https://doi.org/10.2134/agronj1951.00021962004300090005x
  • Bremner, J.M., 1996. Nitrogen total. In: Methods of Soil Analysis Part 3: Chemical Methods (Ed: (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.), SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin, USA.
  • Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., Andreev, A., 2002. Carbon cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model. Global Biogeochemical Cycles, 16: 1139. https://doi.org/10.1029/2001GB001662.
  • Chatterjee, N., Nair, P.K.R., Saptarshi Chakraborty, S., Vimala, D., Nair, V.D., 2018. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agro ecological regions: A meta-analysis, Agriculture. Ecosystems & Environment, 266: 55-67. https://doi.org/ 10.1016/j.agee.2018.07.014.
  • Deng, L., Liu, G.B., Shangguan, Z.P., 2014. Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’Program: A synthesis. Global Change Biology, 20(11): 3544-3556. https://doi.org/10.1111/gcb.12508.
  • Doğan, U., 2002. Subsidence dolines formed by gypsum karstification at the east of Çankırı. Gazi University, Journal of Gazi Education Faculty, 22(1): 67-82.
  • Don, A., Schumacher, J., Freibauer, A., 2011. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Global Change Biology, 17(4): 1658-1670. https://doi.org/ 10.1111/j.1365-2486.2010.02336.x.
  • Fang, X., Xue, Z., Li, B., An, S., 2012. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena, 88: 6-13. https://doi.org/10.1016/j.catena.2011.07.012.
  • FAO and ITPS., 2018. Global Soil Organic Carbon Map (GSOC map) Technical Report. Food and Agriculture Organization of the United Nations, Technical Report (V1.2.0). Rome. https://doi.org/10.4060/ca7597en.
  • FAO 2017a. Soil Organic Carbon: The Hidden Potential. Food and Agriculture Organization of the United Nations Rome, Italy. ISBN 978-92-5-109681-9
  • FAO, 2017b. Global Soil Organic Carbon Database (at 30 arcsec). Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.4060/ca7597en
  • Francaviglia, R., Renzi, G., Ledda, L., Benedetti, A., 2017. Organic carbon pools and soil biological fertility are affected by land use intensity in Mediterranean ecosystems of Sardinia, Italy. Science of the Total Environment, 599-600: 789-796. 10.1016/j.scitotenv.2017.05.021.
  • Friedlingstein, P., Jones, C.D., Prentice, I.C., Woodward, F.I., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015-2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x.
  • GDF, 1995a. 1995-2005, Çankırı Forest Management Unit Plan, General Directorate of Forestry (GDF), Regional Directorate of Ankara, Forest District Directorate of Çankırı.
  • GDF, 1995b. 1995-2005, Yapraklı Forest Management Unit Plan, General Directorate of Forestry (GDF), Regional Directorate of Ankara, Forest District Directorate of Çankırı.
  • Göl, C., Yılmaz, H., 2017. The effect of land use type/ land cover and aspect on soil properties at the Gökdere catchment in Northwestern Turkey. Šumarski List, 141: 9-10. https://doi.org/10.31298/sl.141.9-10.2.
  • Göl, C., 2009. The effect of land use change on soil properties and organic carbon at Dağdamı river catchment in Turkey. Journal of Environmental Biology, 30(5): 825-830.
  • Göl, C., Bulut, S., Bolat, F., 2017. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134: 85-91. https://doi.org/10.1016/j.jafrearsci.2017.06.014.
  • Govers, G., Merckx, R., Van Oost, K., Wesemael, B.V., 2013. Managing Soil Organic Carbon for Global Benefits: A STAP Technical Report. Global Environment Facility, Washington, D.C.
  • Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: A meta-analysis. Global Change Biology, 8(4): 345-360. https://doi.org/10.1046/j.1354-1013.2002.00486.x.
  • Harris, N.L., Brown, S., Hagen, S.C., 2012. Baseline map of carbon emissions from deforestation in tropical regions. Science, 336(6088): 1573-1576. 10.1126/science.1217962.
  • Hoffmann, U., Yair, A., Hikel, H., Kuhn, N.J., 2012. Soil organic carbon in the rocky desert of northern Negev (Israel). Journal of Soils and Sediments, 12(6): 811-825. https://doi.org/ 10.1007/s11368-012-0499-8 Houghton, R.A., Goodale C.L., 2004. Effects of land-use change on the carbon balance of terrestrial ecosystems. In: Ecosystems and Land Use Change (Ed: De Fries, R., Asner, G., Houghton, R.), American Geophysical Union, Washington DC.
  • Houghton, R.A., Nassikas, A.A., 2018. Negative emissions from stopping deforestation and forest degradation, globally. Global Change Biology, 24(1): 350-359. https://doi.org/ 10.1111/gcb.13876.
  • IPCC., 2013. Summary for policy makers. In: Stocker, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ed: Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Jeloudar, Z.J., Shabanzadeh, S., Kavian, A., 2014. Spatial Variability of Soil Features Affected by Land use Type using Geostatistics. Ecopersia, 2(3): 667-679. http://ecopersia .modares.ac.ir/article-24-368-en.html.
  • Jiang, P., Cheng, L., Li, M., Zhao, R., Duan, Y., 2015. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle Heihe River basin, China. Science of the Total Environment, 506-507: 259-271. https://doi.org/10.1016/j.scitotenv.2014.11.004.
  • Köchy, M., Hiederer, R.,, Freibauer, A., 2015. Global distribution of soil organic carbon-Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1): 351-365. https://doi.org/10.5194/soil-1-351-2015.
  • Kooch, Y., Noghre, N., 2020. Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193: 104621. https://doi.org/10.1016/j.catena.2020.104621.
  • Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1627. 10.1126/science.1097396.
  • Lal. R., Kimble, J.M., Follett, R.F., Cole, C.V., 1998. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Ann Arbor Press, Chelsea.
  • Li, Y., Zhao, X., Chen, Y., Luo, Y., Wang, S., 2012. Effects of grazing exclusion on carbon sequestration and the associated vegetation and soil characteristics at a semi-arid decertified sandy site in Inner Mongolia, northern China. Canadian Journal of Soil Science, 92(6): 807-819. https://doi.org/ 10.4141/cjss2012-030.
  • Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., Li, L., 2020. Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecological Indicators, 110: 105925. https://doi.org/10.1016/j.ecolind.2019.105925.
  • Liu, X., Yang, T., Wang, Q., Farong Huang, F., Lanhai Li, L., 2017. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Science of the Total Environment, 618: 1658-1664. https://doi.org/10.1016/j.scitotenv.2017.10.009.
  • Lozano-García, B., Parras-Alcántara, L., 2014. Variation in soil organic carbon and nitrogen stocks along a top sequence in a traditional Mediterranean olive grove. Land Degradation and Development, 25(3): 297-304. https://doi.org/10.1002/ldr.2284.
  • Mukhopadhyay, S., Masto, R.E., Cerdà, A., Ram, L.C., 2015. Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena, 141: 100-108. https://doi.org/10.1016/j.catena.2016.02.023.
  • Nelson, D.W., Sommers, L.E., 1996. Methods of Soil Analysis. Part 3. Chemical Methods. (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.), Soil Science of America and American Society of Agronomy, SSSA Book Series Madison, USA. Olofsson, J., Hickler, T., 2008. Effects of human land-use on the global carbon cycle during the last 6,000 years. Vegetation History and Archaeobotany, 17(5): 605-615. https://doi.org/ 10.1007/s00334-007-0126-6.
  • Olson, K.R., Al-Kaisi, M.M., 2015. The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena, 125: 33-37. https://doi.org/10.1016/j.catena.2014.10.004.
  • Poeplau, C., Don, A., Vesterdal, L., Leifield, J., Van Wesemael, B., Schumacher, J., Gensior, A., 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Global Change Biology, 17(7): 2415-2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x.
  • Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramill, V.J., Kheshgi, H.S., LeQuéré, C., Scholes, R.J., Wallace Douglas, W.R., 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Ed: Houghton et al.). Cambridge University Press, Cambridge, UK, pp. 185-237.
  • Pribyl, D.W., 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3-4): 75-83. https://doi.org/10.1016/j. geoderma.2010.02.003.
  • Pugh, T., Arneth, A., Olin, S., Ahlström, A., Bayer, A., Goldewijk, K.K., Lindeskog, M., Schurgers, G., 2015. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters, 10(12): 124008. 10.1088/1748-9326/10/12/124008.
  • Quadrelli, R., Peterson, S., 2007. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11): 5938-5952. https://doi.org/10.1016/ j.enpol.2007.07.001.
  • Quinton, J.N., Govers, G., Van Oost, K. & Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5): 311-314. https://doi.org/10.1038/ngeo838.
  • Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. Part 3. Chemical Methods (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.), Soil Science of America and American Society of Agronomy. SSSA Book Series, Madison-USA, pp. 417-437. https://doi.org/10.2136/sssabookser5.3.
  • Richard, H.L., Donald, L.S., 1996. Carbonate and gypsum. In: Methods of Soil Analysis. Part 3. Chemical Methods (Ed: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston, C. T.; Sumner M. E.) Soil Science of America and American Society of Agronomy. SSSA Book Series, Madison-USA, pp. 437-475.
  • Robertson, F., Armstrong, R., Partington, D., Perris, R., Oliver, I., Aumann, C., Crawford, D., Rees, D., 2015. Effect of cropping practices on soil organic carbon: evidence from long-term field experiments in Victoria, Australia. Soil Research, 53: 636-646. http://dx.doi.org/10.1071/SR14227.
  • Scharlemann, J.P.W., Tanner, E., Kapos, V., 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1): 81-91. https://doi.org/10.4155/cmt.13.77.
  • Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappiè, M., Märker, M., Saia, S., 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modeling. Science of the Total Environment, 601-602: 821-832. 10.1016/j.scitotenv. 2017.05.239.
  • Schulp, C.J.E., Verburg, P.H., 2009. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture, Ecosystems & Environment, 133(1-2): 86-97. https://doi.org/10.1016/ j.agee.2009.05.005.
  • Searchinger, T.D., Wirsenius, S., Beringer, T., Dumas, P., 2018. Assessing the efficiency of changes in land use for mitigating climate change. Nature, 564: 249-253. https://doi.org/ 10.1038/s41586-018-0757-z.
  • Seeber, J., Seeber, G.U.H., 2005. Effects of land-use changes on humus forms on alpine pastureland (Central Alps, Tyrol). Geoderma, 124(3-4): 215-222. https://doi.org/10.1016/ j.geoderma.2004.05.002.
  • Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., PiaoS.L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C.D., Prentice, I.C., Woodward, F.I., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015-2039.
  • Stumpf, F., Keller, A., Schmidt, K., Mayr, A., Gubler, A., Schaepman, M., 2018. Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems. Agriculture, Ecosystems and Environment, 258: 129-142. https://doi.org/10.1016/j.agee.2018.02.012.
  • Thompson, I.D., Guariguata, M.R., Okabe, K., Bahamondez, C., Nasi, R., Heymell V., Sabogal, C., 2013. An operational framework for defining and monitoring forest degradation. Ecology and Society, 18(2): 20. https://doi.org/10.5751/ES-05443-180220.
  • Vagen, T.G., Lal, R., Singh, B.R., 2005. Soil carbon sequestration in sub-Saharan Africa: A review. Land Degradation & Development, 16(1): 53-71. https://doi.org/10.1002/ldr.644.
  • Wasak, K., Drewnik, M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland – a case study from the Tatra Mountains (Poland). Solid Earth Discussions, 7(2): 1577-1610. https://doi.org/ 10.5194/se-6-1103-2015.
  • Wei, X., Shao, M., Gale, W., Li, L., 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4(1): 1-6. https://doi.org/ 10.1038/srep04062.
  • Wiesmeier, M, Lützow, M., Spörlein, P., 2015. Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil and Tillage Research, 146(B): 296-302. https://doi.org/10.1016/j.still.2014.10.003.
  • Wu, H.B., Guo, Z.T., Peng, C.H., 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9: 305-315. 10.1046/j.1365-2486.2003.00590.x.
  • Yazdanshenas, H., Tehrani, M.S.G., Ajirloo, M.K., Tarnian, F., 2021. Changes in soil organic carbon across an atmospheric CO2 gradient under natural and artificial vegetation of semiarid lands. Environmental Earth Science, 80(2): 1-10. https://doi.org/10.1007/s12665-020-09319-2.
  • Zhou, Y., Hartemink, A.E., Shi, Z., Liang, Z., Lu, Y., 2019. Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 64: 1230-1238. 10.1016/j.scitotenv.2018.08.016.
  • Zhou, Z., Wang, C., Lou, Y., 2018. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecology Biogeography, 27(1): 110-124. https://doi.org/10.1111/geb.12663.
There are 72 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Ceyhun Göl 0000-0002-9102-5670

Serhat Mevruk 0000-0002-8568-0353

Project Number TÜBİTAK 2209-A, 1919B011502795
Publication Date December 29, 2022
Acceptance Date November 3, 2022
Published in Issue Year 2022 Volume: 23 Issue: 4

Cite

APA Göl, C., & Mevruk, S. (2022). Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye. Turkish Journal of Forestry, 23(4), 268-277. https://doi.org/10.18182/tjf.1117835
AMA Göl C, Mevruk S. Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye. Turkish Journal of Forestry. December 2022;23(4):268-277. doi:10.18182/tjf.1117835
Chicago Göl, Ceyhun, and Serhat Mevruk. “Assessing Amount of Soil Organic Carbon and Some Soil Properties under Different Land Uses in a Semi-Arid Region of Northern Türkiye”. Turkish Journal of Forestry 23, no. 4 (December 2022): 268-77. https://doi.org/10.18182/tjf.1117835.
EndNote Göl C, Mevruk S (December 1, 2022) Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye. Turkish Journal of Forestry 23 4 268–277.
IEEE C. Göl and S. Mevruk, “Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye”, Turkish Journal of Forestry, vol. 23, no. 4, pp. 268–277, 2022, doi: 10.18182/tjf.1117835.
ISNAD Göl, Ceyhun - Mevruk, Serhat. “Assessing Amount of Soil Organic Carbon and Some Soil Properties under Different Land Uses in a Semi-Arid Region of Northern Türkiye”. Turkish Journal of Forestry 23/4 (December 2022), 268-277. https://doi.org/10.18182/tjf.1117835.
JAMA Göl C, Mevruk S. Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye. Turkish Journal of Forestry. 2022;23:268–277.
MLA Göl, Ceyhun and Serhat Mevruk. “Assessing Amount of Soil Organic Carbon and Some Soil Properties under Different Land Uses in a Semi-Arid Region of Northern Türkiye”. Turkish Journal of Forestry, vol. 23, no. 4, 2022, pp. 268-77, doi:10.18182/tjf.1117835.
Vancouver Göl C, Mevruk S. Assessing amount of soil organic carbon and some soil properties under different land uses in a semi-arid region of northern Türkiye. Turkish Journal of Forestry. 2022;23(4):268-77.