Gelişen teknolojiyle beraber diğer disiplinlerde olduğu gibi ormancılıkta da geleneksel uygulamaların daha ekonomik, etkin, hızlı ve kolay yapılabilmesi için yenilikçi yaklaşımların kullanımına talepler ve ihtiyaçlar artmaktadır. Özellikle son dönemde ortaya çıkan ormancılık bilişimi, hassas ormancılık, akıllı ormancılık, Ormancılık (Forestry) 4.0, iklim-akıllı ormancılık, sayısal ormancılık ve ormancılık büyük verisi gibi terimler ormancılık disiplinin gündeminde yer almaya başlamıştır. Bunların neticesinde de makine öğrenmesi ve son dönemde ortaya çıkan otomatik makine öğrenmesi (AutoML) gibi modern yaklaşımların ormancılıkta karar verme süreçlerine entegre edildiği akademik çalışmaların sayısında önemli artışlar gözlenmektedir. Bu çalışma, makine öğrenmesi algoritmalarının Türkçe dilinde anlaşılırlığını daha da artırmak, yaygınlaştırmak ve ilgilenen araştırmacılar için ormancılıkta kullanımına yönelik bir kaynak olarak değerlendirilmesi amacıyla ortaya konulmuştur. Böylece çeşitli ormancılık faaliyetlerinde makine öğrenmesinin hem geçmişten günümüze nasıl kullanıldığını hem de gelecekte kullanım potansiyelini ortaya koyan bir derleme makalesinin ulusal literatüre kazandırılması amaçlanmıştır.
Advanced technology has increased demands and needs for innovative approaches to apply traditional methods more economically, effectively, fast and easily in forestry, as in other disciplines. Especially recently emerging terms such as forestry informatics, precision forestry, smart forestry, Forestry 4.0, climate-intelligent forestry, digital forestry and forestry big data have started to take place on the agenda of the forestry discipline. As a result, significant increases are observed in the number of academic studies in which modern approaches such as machine learning and recently emerged automatic machine learning (AutoML) are integrated into decision-making processes in forestry. This study aims to increase further the comprehensibility of machine learning algorithms in the Turkish language, to make them widespread, and be considered a resource for researchers interested in their use in forestry. Thus, it was aimed to bring a review article to the national literature that reveals both how machine learning has been used in various forestry activities from the past to the present and its potential for use in the future.
Primary Language | Turkish |
---|---|
Subjects | Engineering, Forestry Sciences (Other) |
Journal Section | Derleme |
Authors | |
Publication Date | June 28, 2023 |
Acceptance Date | May 17, 2023 |
Published in Issue | Year 2023 Volume: 24 Issue: 2 |