Research Article
BibTex RIS Cite

The performance of 3d printed dowel with three different surface designs in furniture joints

Year 2024, Volume: 25 Issue: 1, 100 - 106, 30.03.2024
https://doi.org/10.18182/tjf.1387389

Abstract

The shear strengths of the joints produced by using Poly Lactic Acid (PLA), PLA+ Thermoplastic Polyurethane (TPU), and resin (Acrylic Photopolymer) with three different surface design of the dowels including, grooved, straight, and cross were investigated compared, wood and plastic dowels. The Results indicated that among L-type furniture joints, those manufactured from PLA and conventional wood dowels displayed the highest shear resistance, followed by L-type furniture joints with dowels made from PLA+TPU, resin, and plastic. Generally, differences in dowel patterns did not have a statistically significant impact on the shear resistance of L-type joints, except for the straight pattern dowels made of resin, which exhibited a statistically higher shear resistance than the grooved pattern dowels. Regarding the failure mode results, only PLA, PLA+TPU, and wooden dowels showed signs of elongation and crushing within the dowel holes. Conversely, in joints using dowels produced from resin and plastic, the dowels broke under shear stress, without displaying elongation, and did not leave any evidence of crushing in the dowel holes. Overall, the results of the study indicated that dowels made only PLA exhibited similar shear resistance compared to conventional wood dowels. Additionally, the study demonstrated that 3D-printed dowels were stronger than conventional plastic dowels.

References

  • Alaboodi, A.S., Sivasankaran, S., 2018. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompat-ibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes, 35: 479-491.
  • Aydın, M., 2015. Additive manufacturing: is it a new era for furniture production? Journal of Mechanics Engineering and Automation, 5: 338-347.
  • Aydın, M., Yılmaz Aydın, T., 2022. Bio - Mimicry: Tree rings and three-dimensional printing – Preliminary biomimetic experiments with fused deposition modeling using acrylonitrile butadiene styrene filament. BioResources, (17)4: 6588-6597.
  • Carutasu, N.L., Simion, I., Carutasu, G., Jiga, G., Arion, A.F., 2015. Experimental test for elastic and mechanical evaluation of abs plastic used in 3D printing. Materiale Plastice, 52(3): 397-401.
  • Chen, S., Lu, J., Feng, J., 2018. 3D-printable abs blends with ımproved scratch resistance and balanced mechanical performance. Industrial and Engineering Chemistry Reserarch, 57(11): 3923-3931.
  • Chen, C., Xing, Y., Xu, W., Tor, O., Quin, F., Zhang, J., 2019. Ultimate direct withdrawal loads of low shear strenght woodej dowels in selected wood species for furniture applications. BioResources, 14(4): 9214-9227.
  • Demirel, S., Kalayci, G., 2019. Ratio of proportional limit load to ultimate load of the joint constructed from wood and wood based material. 29th Onternational Conference, research for Furniture Industry, 19-20 September, Ankara, Turkey pp. 67-74.
  • Demirel, S., Bas, S., 2021. Evaluation of creep characteristics of single- staple furniture joints made of different wood species. Drvna Industrija, 72(2): 179-186.
  • Dul, S., Fambri, L., Pegoretti, A., 2016. Fused deposition modelling with ABS-graphene nanocomposites. Composite Part A: Applied Science and Manufacturing, 85: 181-191.
  • Efe, H., Kasal, A., 2003. Çerçeve konstrüksiyonlu mobilya "T" tipi kavelalı birleştirmelerde köşe destek elemanı boyutunun çekme direncine etkisi. Gazi University Journal of Science, 16(2): 339-350.
  • Hamzah, K.A., Yeoh, C.K., Noor, M.M., Teh, P.L., Aw, Y.Y., Sazali, S.A., 2019. Mechanical properties and thermal and electrical conductivity of 3D printed ABS-Copper ferrite composites via 3D printing technique, Journal of Thermoplast Composite Materials, 35: 3-16.
  • Hossain, N., Chowdhury, M.A., Shuvho M.B.A., 2021. 3D-Printed objects for multipurpose applications. Journal of Material Engineering Performance, 30: 4756-4767.
  • Kariz, M., Kuzman, M.K., Sernek, M., 2017. Adhesive bonding of 3D printed ABS parts and wood. Journal of Adhesve Science and Technolology, 31(15): 1683-1690.
  • Kasal, A., 2008. Farklı ölçülerde köşe destek elemanı kullanılmış t-tipi kavelalı mobilya birleştirmelerinin moment ve kesme kuvveti taşıma kapasiteleri. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 23(2): 273-282.
  • Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., 2016. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composite Part B: Engineering, 86: 36-39.
  • Levenhagen, N.P., Dadmun, M.D., 2018. Interlayer diffusion of surface segregating additives to ımprove the ısotropy of fused deposition modeling products. Polymer (Guildf), 152: 35-41.
  • Maciag, T., Wieczorek, J., Kalsa, W., 2019. Surface analysis of ABS 3D prints subjected to copper plating. Archives Metallurgy and Materials, 64(2): 639–646.
  • McCullough, E.J., Yadavalli, V.K., 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Material Process Technology, 213(6): 947–954.
  • Niklas, K.J., 1996. Mechanical properties of black locust (Robinia pseudoacacia) wood: correlations among elastic and rupture moduli, proportional limit, and tissue density and specific gravity. Annals of Botany, 79: 479-485.
  • Örs, Y., Efe, H., 1998. Mobilya (çerçeve konstrüksiyon) tasarımında bağlantı elemanlarının mekanik davranış özellikleri. Doğa-Turkish Journal of Agriculture and Forestry, 22(5): 21-27.
  • Raj, S.A., Muthukumaran, E., Jayakrishna, K., 2018. A case study of 3D printed PLA and its mechanical properties. Materials Today Proceeding, 5(5): 11219-11226.
  • Sagias, V.D., Giannakopoulos, K.I., Stergiou, C., 2018. Mechanical properties of 3D printed Polymer Specimens. Procedia Structural Integrity, 10: 85-90.
  • Skorski, M.R., Esenther, J.M., Ahmed, Z., Miller, A.E., Hartings, M.R., 2016. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Science and Technology of Advanced Materials, 17(1): 89-97.
  • Vlasceanu, D., Baciu, F., Popescu, D., Hadar, A., Marinescu, R., 2018. Development and 3D printing of an ABS ergonomic handle for medical use a case study. Materiale Plastice, 55(4): 630-633.
  • Vaidya, A., Pathak, K., 2019. Mechanical stability of dental materials. In: Applications of Nanocomposite Materials in Dentistry (Ed:Asiri, A.M., Inamuddin, A.M.), Woodhead Publishing Series in Biomaterials, India, pp. 285-305.
  • Yılmaz Aydın, T., 2022. Do it yourself furniture: Part A - Designing fittings for an easy to manufacture hybrid chair. Furniture and Wooden Material Reserach Journal, 5(1): 50-60.
  • Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., 2016. Isotropic and anisotropic elasticity and yielding of 3D printed material. Composite Part B: Engineering, (99): 506-13.

Üç farklı yüzey tasarımına sahip 3d baskılı kavelaların mobilya birleşme yerlerindeki performansları

Year 2024, Volume: 25 Issue: 1, 100 - 106, 30.03.2024
https://doi.org/10.18182/tjf.1387389

Abstract

Yivli, düz ve çapraz olmak üzere üç farklı yüzey tasarımına sahip kavelaların sadece PLA, PLA+TPU, Reçine (Akrilik Fotopolimer) kullanılarak üretilen birleşim yerlerinin makaslama (kesme) mukavemetleri ahşap ve plastik kavelalarla karşılaştırılarak incelenmiştir. Sonuçlar, L tipi mobilya birleşme yerlerinde PLA ve geleneksel ahşap kavelalardan üretilenlerin en yüksek kesme direncini sergilediğini, bunu PLA+TPU, reçine ve plastikten yapılan kavelalardan üretilen L tipi mobilya birleşme yerlerinin izlediğini göstermiştir. Genel olarak, yivli desenli kavelaların istatistiksel olarak daha yüksek kesme direnci sergileyen reçineden yapılmış düz desenli kavelalar dışında, kavela desenlerindeki farklılıklar L tipi birleşme yerlerinin kesme direnci üzerinde istatistiksel olarak anlamlı bir etkiye sahip olamamıştır. Kırılma modu sonuçlarına ilişkin olarak, yalnızca PLA, PLA+TPU ve ahşap kavelalarda, kavela deliklerinde uzama ve ezilme belirtileri görülmüştür. Bunun tersine, reçine ve plastikten üretilen kavelaların kullanıldığı birleşme yerlerinde kavelaların kesme gerilimi altında uzama göstermeden kırılmış ve kavela deliklerinde herhangi bir ezilme izi bırakmamıştır. Genel olarak çalışmanın sonuçları, yalnızca PLA'dan yapılan kavelaların, geleneksel ahşap kavelalarla karşılaştırıldığında benzer kesme direnci sergilediğini göstermiştir. Ayrıca çalışma, 3D baskılı kavelaların geleneksel plastik kavelalardan daha güçlü olduğunu göstermiştir.

References

  • Alaboodi, A.S., Sivasankaran, S., 2018. Experimental design and investigation on the mechanical behavior of novel 3D printed biocompat-ibility polycarbonate scaffolds for medical applications. Journal of Manufacturing Processes, 35: 479-491.
  • Aydın, M., 2015. Additive manufacturing: is it a new era for furniture production? Journal of Mechanics Engineering and Automation, 5: 338-347.
  • Aydın, M., Yılmaz Aydın, T., 2022. Bio - Mimicry: Tree rings and three-dimensional printing – Preliminary biomimetic experiments with fused deposition modeling using acrylonitrile butadiene styrene filament. BioResources, (17)4: 6588-6597.
  • Carutasu, N.L., Simion, I., Carutasu, G., Jiga, G., Arion, A.F., 2015. Experimental test for elastic and mechanical evaluation of abs plastic used in 3D printing. Materiale Plastice, 52(3): 397-401.
  • Chen, S., Lu, J., Feng, J., 2018. 3D-printable abs blends with ımproved scratch resistance and balanced mechanical performance. Industrial and Engineering Chemistry Reserarch, 57(11): 3923-3931.
  • Chen, C., Xing, Y., Xu, W., Tor, O., Quin, F., Zhang, J., 2019. Ultimate direct withdrawal loads of low shear strenght woodej dowels in selected wood species for furniture applications. BioResources, 14(4): 9214-9227.
  • Demirel, S., Kalayci, G., 2019. Ratio of proportional limit load to ultimate load of the joint constructed from wood and wood based material. 29th Onternational Conference, research for Furniture Industry, 19-20 September, Ankara, Turkey pp. 67-74.
  • Demirel, S., Bas, S., 2021. Evaluation of creep characteristics of single- staple furniture joints made of different wood species. Drvna Industrija, 72(2): 179-186.
  • Dul, S., Fambri, L., Pegoretti, A., 2016. Fused deposition modelling with ABS-graphene nanocomposites. Composite Part A: Applied Science and Manufacturing, 85: 181-191.
  • Efe, H., Kasal, A., 2003. Çerçeve konstrüksiyonlu mobilya "T" tipi kavelalı birleştirmelerde köşe destek elemanı boyutunun çekme direncine etkisi. Gazi University Journal of Science, 16(2): 339-350.
  • Hamzah, K.A., Yeoh, C.K., Noor, M.M., Teh, P.L., Aw, Y.Y., Sazali, S.A., 2019. Mechanical properties and thermal and electrical conductivity of 3D printed ABS-Copper ferrite composites via 3D printing technique, Journal of Thermoplast Composite Materials, 35: 3-16.
  • Hossain, N., Chowdhury, M.A., Shuvho M.B.A., 2021. 3D-Printed objects for multipurpose applications. Journal of Material Engineering Performance, 30: 4756-4767.
  • Kariz, M., Kuzman, M.K., Sernek, M., 2017. Adhesive bonding of 3D printed ABS parts and wood. Journal of Adhesve Science and Technolology, 31(15): 1683-1690.
  • Kasal, A., 2008. Farklı ölçülerde köşe destek elemanı kullanılmış t-tipi kavelalı mobilya birleştirmelerinin moment ve kesme kuvveti taşıma kapasiteleri. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 23(2): 273-282.
  • Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., 2016. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composite Part B: Engineering, 86: 36-39.
  • Levenhagen, N.P., Dadmun, M.D., 2018. Interlayer diffusion of surface segregating additives to ımprove the ısotropy of fused deposition modeling products. Polymer (Guildf), 152: 35-41.
  • Maciag, T., Wieczorek, J., Kalsa, W., 2019. Surface analysis of ABS 3D prints subjected to copper plating. Archives Metallurgy and Materials, 64(2): 639–646.
  • McCullough, E.J., Yadavalli, V.K., 2013. Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Material Process Technology, 213(6): 947–954.
  • Niklas, K.J., 1996. Mechanical properties of black locust (Robinia pseudoacacia) wood: correlations among elastic and rupture moduli, proportional limit, and tissue density and specific gravity. Annals of Botany, 79: 479-485.
  • Örs, Y., Efe, H., 1998. Mobilya (çerçeve konstrüksiyon) tasarımında bağlantı elemanlarının mekanik davranış özellikleri. Doğa-Turkish Journal of Agriculture and Forestry, 22(5): 21-27.
  • Raj, S.A., Muthukumaran, E., Jayakrishna, K., 2018. A case study of 3D printed PLA and its mechanical properties. Materials Today Proceeding, 5(5): 11219-11226.
  • Sagias, V.D., Giannakopoulos, K.I., Stergiou, C., 2018. Mechanical properties of 3D printed Polymer Specimens. Procedia Structural Integrity, 10: 85-90.
  • Skorski, M.R., Esenther, J.M., Ahmed, Z., Miller, A.E., Hartings, M.R., 2016. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Science and Technology of Advanced Materials, 17(1): 89-97.
  • Vlasceanu, D., Baciu, F., Popescu, D., Hadar, A., Marinescu, R., 2018. Development and 3D printing of an ABS ergonomic handle for medical use a case study. Materiale Plastice, 55(4): 630-633.
  • Vaidya, A., Pathak, K., 2019. Mechanical stability of dental materials. In: Applications of Nanocomposite Materials in Dentistry (Ed:Asiri, A.M., Inamuddin, A.M.), Woodhead Publishing Series in Biomaterials, India, pp. 285-305.
  • Yılmaz Aydın, T., 2022. Do it yourself furniture: Part A - Designing fittings for an easy to manufacture hybrid chair. Furniture and Wooden Material Reserach Journal, 5(1): 50-60.
  • Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., 2016. Isotropic and anisotropic elasticity and yielding of 3D printed material. Composite Part B: Engineering, (99): 506-13.
There are 27 citations in total.

Details

Primary Language English
Subjects Wood Processing
Journal Section Orijinal Araştırma Makalesi
Authors

Samet Demirel 0000-0003-4842-7073

Nazmiye Tuğçe Kuvel 0009-0001-1399-1320

Kutay Çava 0000-0002-3438-5418

Mustafa Aslan 0000-0003-2299-8417

Publication Date March 30, 2024
Submission Date November 7, 2023
Acceptance Date December 21, 2023
Published in Issue Year 2024 Volume: 25 Issue: 1

Cite

APA Demirel, S., Kuvel, N. T., Çava, K., Aslan, M. (2024). The performance of 3d printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry, 25(1), 100-106. https://doi.org/10.18182/tjf.1387389
AMA Demirel S, Kuvel NT, Çava K, Aslan M. The performance of 3d printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry. March 2024;25(1):100-106. doi:10.18182/tjf.1387389
Chicago Demirel, Samet, Nazmiye Tuğçe Kuvel, Kutay Çava, and Mustafa Aslan. “The Performance of 3d Printed Dowel With Three Different Surface Designs in Furniture Joints”. Turkish Journal of Forestry 25, no. 1 (March 2024): 100-106. https://doi.org/10.18182/tjf.1387389.
EndNote Demirel S, Kuvel NT, Çava K, Aslan M (March 1, 2024) The performance of 3d printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry 25 1 100–106.
IEEE S. Demirel, N. T. Kuvel, K. Çava, and M. Aslan, “The performance of 3d printed dowel with three different surface designs in furniture joints”, Turkish Journal of Forestry, vol. 25, no. 1, pp. 100–106, 2024, doi: 10.18182/tjf.1387389.
ISNAD Demirel, Samet et al. “The Performance of 3d Printed Dowel With Three Different Surface Designs in Furniture Joints”. Turkish Journal of Forestry 25/1 (March 2024), 100-106. https://doi.org/10.18182/tjf.1387389.
JAMA Demirel S, Kuvel NT, Çava K, Aslan M. The performance of 3d printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry. 2024;25:100–106.
MLA Demirel, Samet et al. “The Performance of 3d Printed Dowel With Three Different Surface Designs in Furniture Joints”. Turkish Journal of Forestry, vol. 25, no. 1, 2024, pp. 100-6, doi:10.18182/tjf.1387389.
Vancouver Demirel S, Kuvel NT, Çava K, Aslan M. The performance of 3d printed dowel with three different surface designs in furniture joints. Turkish Journal of Forestry. 2024;25(1):100-6.