Research Article
BibTex RIS Cite

Moisture dependent bending properties of poplar

Year 2024, Volume: 25 Issue: 4, 514 - 519, 28.12.2024
https://doi.org/10.18182/tjf.1547421

Abstract

The influence of moisture on the physical (density) and mechanical (modulus of rupture-MOR, modulus of elasticity-MOE) properties of Populus x canadensis M. were figured out by three three-point bending tests and ultrasonic testing . Samples were conditioned at 20±1 °C and 45, 65, and 85% relative humidity. The calculated ultrasonic longitudinal wave velocity (VLL) was used to determine dynamic MOE (4549 to 4735 MPa) and compared to static MOE (5461 to 5910 MPa). Static MOE values are around 15.3% to 28.1% higher than dynamic values. MOR values, the most influenced properties, decreased from 70.1 MPa to 51.3 MPa with the increase in moisture. Pearson correlation coefficients ranged from 0.52 (MOR vs VLL) to 0.94 MOEdyn vs VLL). The R² values ranged from 0.187 (VLL vs MOR at 85% RH) to 0.94% (VLL vs Edyn at 65% RH).

References

  • Aydın, M., Aydın, T.Y., 2023. Influence of growth ring number and width on elastic constants of poplar. Bioresources, 18(4): 8484–8502. https://doi.org/10.15376/biores.18.4.8484-8502
  • Baar, J., Tippner, J., Rademacher, P., 2015. Prediction of mechanical properties - modulus of rupture and modulus of elasticity - of five tropical species by nondestructive methods. Maderas. Ciencia y tecnología, 17(2): 239-252. https://doi.org/10.4067/ S0718-221X2015005000023
  • Bachtiar, E. V., Sanabria, S.J., Mittig, J.P., Niemz, P., 2017. Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Science and Technology, 51: 47–67. https://doi.org/10.1007/ s00226-016-0851-z
  • Balatinecz, J.J., Kretschmann, D.E., 2002. Properties and utilization of poplar wood. In: Poplar Culture in North America (Eds: Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J.),. NRC Research Press, Dickmann, Donald I., pp. 277–291.
  • Casado, M., Acuña, L., Vecilla, D., Relea, E., Basterra, A., Ramón, G., López, G., 2010. The influence of size in predicting the elastic modulus of Populus x euramericana timber using vibration techniques, In: Structures & Architecture (Ed: Cruz), CRC Press, London, pp. 579–579. https://doi.org/10.1201/ b10428-282
  • Davis, P.H., 1982. Flora of Turkey and East Aegean Islands, Volume 7, Edinburg Universty Press, Edinburg, 947 p.
  • Ettelaei, A., Layeghi, M., Zarea Hosseinabadi, H., Ebrahimi, G., 2019. Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Measurement, 135: 392–399. https://doi.org/10.1016/j. measurement.2018.11.076
  • Gallego, A., Ripoll, M.A., Timbolmas, C., Rescalvo, F., Suarez, E., Valverde, I., Rodríguez, M., Navarro, F.B., Merlo, E., 2021. Modulus of elasticity of I-214 young poplar wood from standing trees to sawn timber: Influence of the age and stand density. European Journal of Wood and Wood Products, 79: 1225–1239. https://doi.org/10.1007/s00107-021-01675-5
  • Gerhards, C.C., 1982. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood and Fiber Science, 14(1): 4–36. Gray, J.D., Grushecky, S.T., Armstrong, J.P., 2008. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content. Proceedings of the 16th Central Hardwoods Forest Conference, 8-9 April, West Lafayette, USA, pp. 139–142.
  • Hodoušek, M., Dias, A.M.P.G., Martins, C., Marques, A.F.S., Böhm, M., 2017. Comparison of non-destructive methods based on natural frequency for determining the modulus of elasticity of Cupressus lusitanica and Populus x canadensis. Bioresources, 12(1): 270–282.
  • Koman, S., Feher, S., Abraham, J., Taschner, R., 2013. Effect of knots on the bending strength and the modulus of elasticity of wood. Wood Research, 58(4): 617–626.
  • Kurt, R., 2010. Suitability of three hybrid poplar clones for laminated veneer lumber manufacturing using melamine urea formaldehyde adhesive. Bioresources, 5(3): 1868–1878.
  • Longo, R., Laux, D., Pagano, S., Delaunay, T., Le Clézio, E., Arnould, O., 2018. Elastic characterization of wood by Resonant Ultrasound Spectroscopy (RUS): A comprehensive study. Wood Science and Technology, 52: 383–402. https://doi.org/10.1007/ s00226-017-0980-z
  • Meija, A., Irbe, I., Morozovs, A., Spulle, U., 2020. Properties of Populus genus veneers thermally modified by two modification methods: wood treatment technology and vacuum thermal treatment. Agronomy Research, 18(3): 2138–2147. https://doi.org/ 10.15159/AR.20.184
  • Papandrea, S.F., Cataldo, M.F., Bernardi, B., Zimbalatti, G., Proto, A.R., 2022. The predictive accuracy of modulus of elasticity (MOE) in the wood of standing trees and logs. Forests, 13(8): 1273. https://doi.org/10.3390/f13081273
  • Pierre, F., Almeida, G., Huber, F., Jacquin, P., Perré, P., 2013. An original impact device for biomass characterisation: results obtained for spruce and poplar at different moisture contents. Wood Science and Technology, 47: 537–555. https:// doi.org/10.1007/s00226-012-0512-9
  • TS 2472, 2005. Wood - Determination of density for physical and mechanical tests, Wood, sawlogs and sawn timber (ICS 79.040). Turkish Standard Institution, Ankara.
  • TS ISO 13061-2, 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. Turkish Standard Institution, Ankara.
  • TS ISO 13061-3, 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 3: Determination of ultimate strength in static bending. Turkish Standard Institution, Ankara.
  • Varivodina, I., Mashkina, O., Varivodin, V., 2018. Technical characteristics of poplar wood as raw material for wide use in timber industry. ProLigno, 14: 20–27.
  • Villasante, A., Vignote, S., Fernandez-Serrano, A., Laina, R., 2021. Simultaneous treatment with oil heat and densification on physical properties of Populus × Canadensis wood. Maderas. Ciencia y tecnología, 24(5): 1-12. https://doi.org/10.4067/ S0718-221X2022000100405
  • Yılmaz Aydın, T., Aydın, M., 2018. Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry, 19(4): 413–418. https://doi.org/10.18182/tjf.459005
  • Yılmaz Aydın, T., Aydın, M., 2020. Influence of temperature and exposure duration on the bending properties of oak wood. Journal of Bartin Faculty of Forestry, 22(3): 871–877. https://doi.org/10.24011/barofd.792268
  • Yılmaz Aydın, T., 2021. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry, 22(4): 432–438. https://doi.org/10.18182/tjf.1019032
  • YingJie, Z., DeJun, F., YanGuang, D., 2017. Wood physical and mechanical properties of Populus × canadensis Moench and Populus × euramericana (Dode) Guinier cv. Gelrica. Agricultural Science and Technology, 18(12): 2532–2535.
  • Zahedi, M., Kazemi Najafi, S., Füssl, J., Elyasi, M., 2022. Determining elastic constants of poplar wood (Populus deltoides) by ultrasonic waves and its application in the finite element analysis. Wood Material Science and Engineering, 17(6): 668–678. https://doi.org/10.1080/17480272.2021.1925962

Kavak odununun rutubete bağlı eğilme özellikleri

Year 2024, Volume: 25 Issue: 4, 514 - 519, 28.12.2024
https://doi.org/10.18182/tjf.1547421

Abstract

Rutubetin, Populus x canadensis M.'in fiziksel (yoğunluk) ve mekanik (Eğilme direnci-MOR, Elastikiyet modülü-MOE) özellikleri üzerindeki etkisi üç nokta eğme testi ve ultrasonik test yöntemi ile belirlenmiştir. Örnekler 20±1 °C'de ve %45, 65 ve 85 bağıl nemde şartlandırılmıştır. Hesaplanan ultrasonik boyuna dalga hızı (VLL) dinamik MOE'yi (4549 ila 4735 MPa) belirlemek için kullanılmış ve statik MOE (5461 ila 5910 MPa) ile karşılaştırılmıştır. Statik MOE değerleri dinamik değerlerden yaklaşık %15.3 ila %28.1 daha yüksektir. Rutubetten en çok etkilenen özellik olan MOR değerleri, rutubetteki artışla birlikte 70.1 MPa'dan 51.3 MPa'ya düşmüştür. Pearson korelasyon katsayıları 0.52 (MOR vs VLL) ile 0.94 MOEdyn vs VLL) arasında değişmektedir. R² değerleri 0.187 (%85 bağıl nemde VLL vs MOR) ile %0.94 (%65 bağıl nemde VLL vs Edyn) arasında değişmiştir.

References

  • Aydın, M., Aydın, T.Y., 2023. Influence of growth ring number and width on elastic constants of poplar. Bioresources, 18(4): 8484–8502. https://doi.org/10.15376/biores.18.4.8484-8502
  • Baar, J., Tippner, J., Rademacher, P., 2015. Prediction of mechanical properties - modulus of rupture and modulus of elasticity - of five tropical species by nondestructive methods. Maderas. Ciencia y tecnología, 17(2): 239-252. https://doi.org/10.4067/ S0718-221X2015005000023
  • Bachtiar, E. V., Sanabria, S.J., Mittig, J.P., Niemz, P., 2017. Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Science and Technology, 51: 47–67. https://doi.org/10.1007/ s00226-016-0851-z
  • Balatinecz, J.J., Kretschmann, D.E., 2002. Properties and utilization of poplar wood. In: Poplar Culture in North America (Eds: Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J.),. NRC Research Press, Dickmann, Donald I., pp. 277–291.
  • Casado, M., Acuña, L., Vecilla, D., Relea, E., Basterra, A., Ramón, G., López, G., 2010. The influence of size in predicting the elastic modulus of Populus x euramericana timber using vibration techniques, In: Structures & Architecture (Ed: Cruz), CRC Press, London, pp. 579–579. https://doi.org/10.1201/ b10428-282
  • Davis, P.H., 1982. Flora of Turkey and East Aegean Islands, Volume 7, Edinburg Universty Press, Edinburg, 947 p.
  • Ettelaei, A., Layeghi, M., Zarea Hosseinabadi, H., Ebrahimi, G., 2019. Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Measurement, 135: 392–399. https://doi.org/10.1016/j. measurement.2018.11.076
  • Gallego, A., Ripoll, M.A., Timbolmas, C., Rescalvo, F., Suarez, E., Valverde, I., Rodríguez, M., Navarro, F.B., Merlo, E., 2021. Modulus of elasticity of I-214 young poplar wood from standing trees to sawn timber: Influence of the age and stand density. European Journal of Wood and Wood Products, 79: 1225–1239. https://doi.org/10.1007/s00107-021-01675-5
  • Gerhards, C.C., 1982. Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects. Wood and Fiber Science, 14(1): 4–36. Gray, J.D., Grushecky, S.T., Armstrong, J.P., 2008. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content. Proceedings of the 16th Central Hardwoods Forest Conference, 8-9 April, West Lafayette, USA, pp. 139–142.
  • Hodoušek, M., Dias, A.M.P.G., Martins, C., Marques, A.F.S., Böhm, M., 2017. Comparison of non-destructive methods based on natural frequency for determining the modulus of elasticity of Cupressus lusitanica and Populus x canadensis. Bioresources, 12(1): 270–282.
  • Koman, S., Feher, S., Abraham, J., Taschner, R., 2013. Effect of knots on the bending strength and the modulus of elasticity of wood. Wood Research, 58(4): 617–626.
  • Kurt, R., 2010. Suitability of three hybrid poplar clones for laminated veneer lumber manufacturing using melamine urea formaldehyde adhesive. Bioresources, 5(3): 1868–1878.
  • Longo, R., Laux, D., Pagano, S., Delaunay, T., Le Clézio, E., Arnould, O., 2018. Elastic characterization of wood by Resonant Ultrasound Spectroscopy (RUS): A comprehensive study. Wood Science and Technology, 52: 383–402. https://doi.org/10.1007/ s00226-017-0980-z
  • Meija, A., Irbe, I., Morozovs, A., Spulle, U., 2020. Properties of Populus genus veneers thermally modified by two modification methods: wood treatment technology and vacuum thermal treatment. Agronomy Research, 18(3): 2138–2147. https://doi.org/ 10.15159/AR.20.184
  • Papandrea, S.F., Cataldo, M.F., Bernardi, B., Zimbalatti, G., Proto, A.R., 2022. The predictive accuracy of modulus of elasticity (MOE) in the wood of standing trees and logs. Forests, 13(8): 1273. https://doi.org/10.3390/f13081273
  • Pierre, F., Almeida, G., Huber, F., Jacquin, P., Perré, P., 2013. An original impact device for biomass characterisation: results obtained for spruce and poplar at different moisture contents. Wood Science and Technology, 47: 537–555. https:// doi.org/10.1007/s00226-012-0512-9
  • TS 2472, 2005. Wood - Determination of density for physical and mechanical tests, Wood, sawlogs and sawn timber (ICS 79.040). Turkish Standard Institution, Ankara.
  • TS ISO 13061-2, 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. Turkish Standard Institution, Ankara.
  • TS ISO 13061-3, 2021. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 3: Determination of ultimate strength in static bending. Turkish Standard Institution, Ankara.
  • Varivodina, I., Mashkina, O., Varivodin, V., 2018. Technical characteristics of poplar wood as raw material for wide use in timber industry. ProLigno, 14: 20–27.
  • Villasante, A., Vignote, S., Fernandez-Serrano, A., Laina, R., 2021. Simultaneous treatment with oil heat and densification on physical properties of Populus × Canadensis wood. Maderas. Ciencia y tecnología, 24(5): 1-12. https://doi.org/10.4067/ S0718-221X2022000100405
  • Yılmaz Aydın, T., Aydın, M., 2018. Effect of density and propagation length on ultrasonic longitudinal wave velocity in some important wood species grown in Turkey. Turkish Journal of Forestry, 19(4): 413–418. https://doi.org/10.18182/tjf.459005
  • Yılmaz Aydın, T., Aydın, M., 2020. Influence of temperature and exposure duration on the bending properties of oak wood. Journal of Bartin Faculty of Forestry, 22(3): 871–877. https://doi.org/10.24011/barofd.792268
  • Yılmaz Aydın, T., 2021. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry, 22(4): 432–438. https://doi.org/10.18182/tjf.1019032
  • YingJie, Z., DeJun, F., YanGuang, D., 2017. Wood physical and mechanical properties of Populus × canadensis Moench and Populus × euramericana (Dode) Guinier cv. Gelrica. Agricultural Science and Technology, 18(12): 2532–2535.
  • Zahedi, M., Kazemi Najafi, S., Füssl, J., Elyasi, M., 2022. Determining elastic constants of poplar wood (Populus deltoides) by ultrasonic waves and its application in the finite element analysis. Wood Material Science and Engineering, 17(6): 668–678. https://doi.org/10.1080/17480272.2021.1925962
There are 26 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Orijinal Araştırma Makalesi
Authors

Tuğba Yılmaz Aydın 0000-0002-6792-9602

Uğur Özkan 0000-0003-0147-9976

Publication Date December 28, 2024
Submission Date September 10, 2024
Acceptance Date November 22, 2024
Published in Issue Year 2024 Volume: 25 Issue: 4

Cite

APA Yılmaz Aydın, T., & Özkan, U. (2024). Moisture dependent bending properties of poplar. Turkish Journal of Forestry, 25(4), 514-519. https://doi.org/10.18182/tjf.1547421
AMA Yılmaz Aydın T, Özkan U. Moisture dependent bending properties of poplar. Turkish Journal of Forestry. December 2024;25(4):514-519. doi:10.18182/tjf.1547421
Chicago Yılmaz Aydın, Tuğba, and Uğur Özkan. “Moisture Dependent Bending Properties of Poplar”. Turkish Journal of Forestry 25, no. 4 (December 2024): 514-19. https://doi.org/10.18182/tjf.1547421.
EndNote Yılmaz Aydın T, Özkan U (December 1, 2024) Moisture dependent bending properties of poplar. Turkish Journal of Forestry 25 4 514–519.
IEEE T. Yılmaz Aydın and U. Özkan, “Moisture dependent bending properties of poplar”, Turkish Journal of Forestry, vol. 25, no. 4, pp. 514–519, 2024, doi: 10.18182/tjf.1547421.
ISNAD Yılmaz Aydın, Tuğba - Özkan, Uğur. “Moisture Dependent Bending Properties of Poplar”. Turkish Journal of Forestry 25/4 (December 2024), 514-519. https://doi.org/10.18182/tjf.1547421.
JAMA Yılmaz Aydın T, Özkan U. Moisture dependent bending properties of poplar. Turkish Journal of Forestry. 2024;25:514–519.
MLA Yılmaz Aydın, Tuğba and Uğur Özkan. “Moisture Dependent Bending Properties of Poplar”. Turkish Journal of Forestry, vol. 25, no. 4, 2024, pp. 514-9, doi:10.18182/tjf.1547421.
Vancouver Yılmaz Aydın T, Özkan U. Moisture dependent bending properties of poplar. Turkish Journal of Forestry. 2024;25(4):514-9.