Research Article
BibTex RIS Cite

Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi

Year 2025, Volume: 26 Issue: 3, 252 - 261, 30.09.2025
https://doi.org/10.18182/tjf.1715300

Abstract

İklim değişikliğinin neden olduğu kuraklık olaylarının sıklığı ve şiddetinin artması, orman ekosistemlerinin sürdürülebilirliği açısından ciddi bir tehdit oluşturmaktadır. Bu bağlamda, fidanlık aşamasında çevresel streslere dirençli bireylerin yetiştirilmesi, ormancılık uygulamalarında öncelikli bir hedef haline gelmiştir. Bu çalışmada, sahil çamı (Pinus pinaster Aiton) üzerinde, silikon (Si) bazlı gübrelemenin fizyolojik ve morfolojik tepkiler aracılığıyla kuraklık toleransını artırma potansiyeli araştırılmıştır. Araştırma kapsamında, 1+1 yaşlı sahil çamı fidanlarına 0, 5, 10, 15 ve 30 g dozlarında silikon bazlı gübre uygulanmış; dört haftalık kuraklık koşullarında fizyolojik [Fotosentetik aktivite (Fv/Fm), minimum floresans (Fo), maksimum floresans (Fm), bağıl su içeriği (RWC), nem içeriği (MC)], morfolojik (çap ve boy artımı, gürbüzlük indisi) ve görsel stres tepkileri değerlendirilmiştir. İki yönlü varyans analizi, işlem (kuraklık/sulama) × doz etkileşiminin Fv/Fm (p=0,009), Fo (p=0,021), Fm (p=0,044) ve MC (p=0,044) üzerinde istatistiksel olarak anlamlı etkiler oluşturduğunu ortaya koymuştur. Sonuçlar, 5–15 g aralığında silikon uygulanan fidanların kuraklık altında daha yüksek fotosentetik verimlilik (Fv/Fm), su tutma kapasitesi (RWC, MC) ve görsel puanları sergilediğini göstermiştir. Buna karşın, yüksek dozlar (30 g) bazı fizyolojik parametrelerde olumsuz etkiler oluşturmuştur. Morfolojik parametrelerde kısa vadede belirgin farklar gözlenmemiş olsa da büyüme eğilimleri orta dozların daha dengeli bir gelişim sağladığını göstermektedir. Bu araştırma, sahil çamı gibi, kuraklığa toleranslı türlerde fidanlık aşamasında silikon bazlı gübrelemenin fizyolojik dayanıklılığı artırarak stres yönetimi için uygulanabilir bir strateji olabileceğini ortaya koymaktadır.

Thanks

Göktürk Orman Fidanlık Şefi Emre ÜLKER, Orman Yüksek Mühendisi Güven KAVRAZ ve fidanlık çalışanlarına katkılarından dolayı teşekkür ederim. Almina gübresini bize sağladığı ve bu çalışmayı yürütme fırsatı sunduğu için Sayın Serhat KAYA'ya içten teşekkürlerimi sunmak isterim. Yüksek lisans öğrencilerimden Sayın Ömer Buğra AVCI’ya çalışma boyunca sağladıkları teknik destekleri için minnettarım. Ayrıca, bu çalışmaya ilişkin değerli görüş ve yorumlarını paylaşan anonim hakemlere katkılarından dolayı teşekkür ederim.

References

  • Abad Viñas, R., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Pinus pinaster in Europe: distribution, habitat, usage and threats. In: European Atlas of Forest Tree Species (Eds: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A.), Publications Office of the EU, Luxembourg, pp. 128-129.
  • Ahammed, G.J., Yang, Y., 2021. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiology and Biochemistry, 165: 200-206.
  • Ahmad, S., Kamran, M., Ding, R., Meng, X., Wang, H., Ahmad, I., Fahad, S., Han, Q., 2019. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 7:e7793. https://doi.org/10.7717/peerj.7793
  • Ahmed, M., Kamran, M., Asif, M., Qureshi, R., 2014. Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: A review. Sustainability, 14(8): 4525. https://doi.org/10.3390/su14084525
  • Allen, C. D., Breshears, D. D., McDowell, N. G., 2015. On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6(8): 1-55.
  • Asgari, F., Majd, A., Jonoubi, P., Najafi, F., 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant physiology and biochemistry, 127: 152-160.
  • Ayan, S., 2007. Kaplı Fidan Üretimi. Fidan Standardizasyonu: Standart Fidan Yetiştirmenin Biyolojik ve Teknik Esasları (Ed., Yahyaoğlu, Z., Genç, M.), Musa Genç Kitaplığı Bilimsel Yayınlar, ss: 301-352.
  • Balekoglu, S., Caliskan, S., Dirik, H., Rosner, S., 2023a. Response to drought stress differs among Pinus pinea provenances. Forest Ecology and Management, 531, 120779.
  • Balekoglu, S., Caliskan, S., Makineci, E., Dirik, H., 2023b. An experimental assessment of carbon and nitrogen allocation in Pinus pinea populations under drought stress and rewatering treatment. Environmental and Experimental Botany, 210, 105334. Barrs, H.D., Weatherley, P.E., 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3): 413-428.
  • Boydak, M., Çalışkan, S., 2021. Ağaçlandırma. Ormancılığı Geliştirme ve Orman Yangınları ile Mücadele Hizmetlerini Destekleme Vakfı (OGEM-VAK) Yayını, CTA Tanıtım Baskı İstanbul.
  • Boydak, M., Çalışkan, S., 2015. Afforestation in Arid and Semi-Arid Regions. The General Directorate of Combating Desertification and Erosion Publication, Ankara.
  • Camarero, J. J., Gazol, A., Tardif, J. C., Conciatori, F., 2015. Attributing forest responses to global‐change drivers: limited evidence of a CO2‐fertilization effect in Iberian pine growth. Journal of Biogeography, 42(11): 2220-2233.
  • Caminero, L., Génova, M., Camarero, J. J., Sánchez-Salguero, R., 2018. Growth responses to climate and drought at the southernmost European limit of Mediterranean Pinus pinaster forests. Dendrochronologia, 48: 20-29.
  • Carneiro-Carvalho, A., Pinto, T., Gomes-Laranjo, J., Anjos, R., 2023. The potential of SiK® fertilization in the resilience of chestnut plants to drought—a biochemical study. Frontiers in Plant Science, 14: 1120226. https://doi.org/10.3389/fpls.2023.1120226.
  • Chen, W., Yao, X., Cai, K., Chen, J., 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142: 67–76.
  • Colangelo, M., Camarero, J.J., Gazol, A., Piovesan, G., Borghetti, M., Baliva, M., Gentilesca, T., Rita, A., Schettino, A., Ripullone, F., 2021. Mediterranean old-growth forests exhibit resistance to climate warming. Science of The Total Environment, 801: 149684.
  • Coskun, D., Britto, D.T., Huynh, W. Q., Kronzucker, H.J., 2016. The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 7: 1072.
  • Çalışkan, S., Balekoğlu, S., Dirik, H.G., 2023. Orman ağaçlarında kuraklık stresi. İklim Değişikliği Orman Ekosistemlerinde Etkileri ve Yönetimi (Ed., Ayan, S.), Palme Yayın Dağıtım, Ankara, ss: 29-51.
  • Çalışkan, S., Boydak, M., 2017. Afforestation of arid and semiarid ecosystems in Turkey. Turkish Journal of Agriculture and Forestry, 41:317–330.
  • Çiçek, N., Cengil, B., Yucedag, C., 2022. Bitki besin elementlerinin önemi ve orman fidanlıklarında gübrelemenin rolü. Theoretical and Applied Forestry, 2(1): 26-32.
  • Deligöz, A., 2009. Anadolu karaçamı (Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe) fidanlarında sulama programının hazırlanmasında bitki su potansiyeli değerlerinin kullanımı. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 10(2): 51-65.
  • Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2): 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
  • Guntzer, F., Keller, C., Meunier, J.D., 2012. Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32: 201–213.
  • Güner, Ş., Çömez, A., Karataş, R., Genç, M., 2012. Yetiştirme sıklığının Anadolu karaçamı fidanlarının dikim başarısına etkisi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 62(2): 89-96.
  • Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D.D., Allen, C. D., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13(1):1761.
  • Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N.G., Powers, J.S., Pugh, T.A.M., Ruthrof, K.X., Allen, C.D., 2022. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73(1): 673-702. Heras-Marcial, M., Aldrete, A., Gómez-Guerrero, A., Rodríguez-Trejo, D.A., 2023. Influence of fertilization on survival and growth of Pinus patula Schiede ex Schltdl. & Cham. under nursery and field conditions. Revista Chapingo serie ciencias forestales y del ambiente, 29(1): 3-14.
  • Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L., 2018. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9: 393.
  • Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., Meyer, L. A. (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press.
  • Kalaji, H.M., Bąba, W., Gediga, K., Goltsev, V., Samborska, I. A., Cetner, M.D., Dimitrova, S., Piszcz, U., Bielecki, K., Karmowska, K., Dankov, K., Kompała-Bąba, A., 2018. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynthesis Research, 136: 329-343.
  • Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., Rockström, J., Scheffer, M., Schellnhuber, H.J., Steffen, W., Lenton, T. M., 2022. Climate endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences, 119(34): e2108146119.
  • Korolyova, N., Buechling, A., Duraciová, R., Zabihi, K., Turcˇáni, M., Svoboda, M., Blaha, J., Swarts, K., Polácˇek, M., Hradecký, J., Červenka, J., Nmcˇák, P., Schlyter, F., Jakuš, R., 2022. The last trees standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agricultural and Forest Meteorology, 322: 109025.
  • Liu, H., Sultan, M.A.R.F., Liu, X., Zhang, J., Yu, F., Zhao, H., 2015. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought tolerant wild wheat (Triticum boeoticum). Plos One 10: e0121852.
  • Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y., Guo, T., 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35: 1–10.
  • Manivannan, A., Ahn, Y.K., 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science, 8:1346.
  • Maxwell, K., Johnson, G. N., 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345): 659-668.
  • McDowell, N.G., Allen, C.D., 2015. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5:669–672.
  • Meehl, G.A., Tebaldi, C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st Century. Science, 305(5686):994–997. https://doi.org/10.1126/science.1098704
  • Murchie, E.H., Lawson, T., 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13): 3983–3998.
  • Oszako, T., Kowalczyk, K., Zalewska, W., Kukina, O., Nowakowska, J. A., Rutkiewicz, A., Bakier, S., Borowik, P., 2023. Feasibility of using a silicon preparation to promote growth of forest seedlings: application to pine (Pinus sylvestris) and Oak (Quercus robur). Forests, 14(3): 1-18.
  • Perry, A., Beaton, J. K., Stockan, J. A., Iason, G. R., Cottrell, J. E., Cavers, S., 2025. Tree nursery environments and their effect on early trait variation. Forestry: An International Journal of Forest Research, cpaf011: 1-12.
  • Rios, J.J., Martinez-Ballesta, M.C., Ruiz, J.M., Blasco, B., Carvajal, M., 2017. Siliconmediated improvement in plant salinity tolerance: the role of aquaporins. Frontiers in Plant Science, 8: 948.
  • Sanda, S., Yoshida, K., Kumano, M., Kawamura, T., Munekage, Y.N., Akashi, K., Yokota, A., 2011. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiologia Plantarum, 142: 247–264.
  • Semenova, N. A., Burmistrov, D. E., Shumeyko, S. A., Gudkov, S. V., 2024. Fertilizers based on nanoparticles as sources of macro-and microelements for plant crop growth: A review. Agronomy, 14(8): 1646.
  • Souri, Z., Khanna, K., Karimi, N., Ahmad, P., 2021. Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation, 40(3): 906-925.
  • Tai, X., Mackay, D.S., Ewers, B.E., Parsekian, A.D., Beverly, D., Speckman, H., Brookd, P.D., Anderegg, W.R., 2019. Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer forest. Journal of Geophysical Research Biogeosciences, 124(11): 3555-3568.
  • Vaculík, M., Lukačová, Z., Bokor, B., Martinka, M., Tripathi, D. K., Lux, A., 2020. Alleviation mechanisms of metal (loid) stress in plants by silicon: a review. Journal of Experimental Botany, 71(21): 6744-6757.
  • Verma, K. K., Song, X. P., Zeng, Y., Guo, D. J., Singh, M., Rajput, V. D., ... Li, Y. R., 2021. Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 166: 582-592.
  • Verma, K.K., Song, X.-P., Li, D.M., Singh, M., Rajput, V.D., Malviya, M.K., Minkina, T., Singh, R.K., Singh, P., Li, Y.R., 2020. Interactive role of silicon and plant–rhizobacteria mitigating abiotic stresses: a new approach for sustainable agriculture and climate change. Plants, 9: 1055. https://doi.org/10.3390/ plants9091055
  • Vilela, R.D., Bezerra, B.K.L., Froehlich, A., Endres, L., 2017. Antioxidant system is essential to increase drought tolerance of sugarcane. Annals of Applied Biology, 171:451–463.
  • Wang, S., Liu, P., Chen, D., Yin, L., Li, H., Deng, X., 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontiers in Plant Science, 6, 759: 1-10
  • Wang, Y., Zhang, B., Jiang, D., Chen, G., 2019. Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environmental and Experimental Botany,158: 117–124.
  • Xu, J., Guo, L., Liu, L., 2022. Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism. Environmental and Experimental Botany, 201:104974.
  • Yahyaoğlu, Z., Genç, M., 2007. Fidan Standardizasyonu. Süleyman Demirel Üniversitesi, Orman Fakültesi Yayını, Isparta.
  • Yan, G., Nikolic, M., Ye, M., Xiao, Z., Liang, Y., 2018. Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17, 2138–2150. https://doi.org/10.1016/s2095-3119(18)62037-4.
  • Yavas¸, I., Aydın, U.N.A.Y., 2017. The role of silicon under biotic and abiotic stress conditions. Turkish Journal of Agricultural Research, 4: 204–209.
  • Younis, A.A., Khattab, H., Emam, M.M., 2020. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biologia Plantarum, 64(1): 343-352
  • Zhou, Y., Lam, H.M., Zhang, J., 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58: 1207–1217.
  • Zhu, Y., Gong, H., 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34: 455–472. https://doi.org/10.1007/s13593-013-0194-1

Effect of silicon-based fertilization against drought stress in maritime pine seedlings

Year 2025, Volume: 26 Issue: 3, 252 - 261, 30.09.2025
https://doi.org/10.18182/tjf.1715300

Abstract

The increase in the frequency and severity of drought events caused by climate change poses a serious threat to the sustainability of forest ecosystems. In this context, raising resistant individuals to environmental stresses at the nursery stage has become a priority target in forestry practices. In this study, the potential of silicon (Si)-based fertilizer to increase drought tolerance through physiological and morphological responses in maritime pine (Pinus pinaster Aiton) was investigated. Within the scope of the research, silicon was applied to 1+1-year-old maritime pine seedlings at doses of 0, 5, 10, 15 and 30 g; physiological [Photosynthetic activity (Fv/Fm), minimum fluorescence (Fo), maximum fluorescence (Fm), relative water content (RWC), moisture content (MC)], morphological (diameter and height increase, sturdiness quotient) and visual stress responses were evaluated under four-week drought conditions. Two-way analysis of variance revealed that treatment (drought/irrigation) × dose interaction had statistically significant effects on Fv/Fm (p=0.009), Fo (p=0.021), Fm (p=0.044) and MC (p=0.044). The results showed that seedlings treated with silicon in the range of 5–15 g exhibited higher photosynthetic efficiency (Fv/Fm), water holding capacity (RWC, MC) and visual scores under drought. In contrast, high doses (30 g) had negative effects on some physiological parameters. Although no significant differences were observed in the morphological parameters in the short term, growth trends showed that medium doses provided more balanced development. The present study suggests that silicon-based fertilizer at the nursery stage may be a viable strategy for stress management by increasing physiological resistance in drought-tolerance species such as maritime pine.

References

  • Abad Viñas, R., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Pinus pinaster in Europe: distribution, habitat, usage and threats. In: European Atlas of Forest Tree Species (Eds: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A.), Publications Office of the EU, Luxembourg, pp. 128-129.
  • Ahammed, G.J., Yang, Y., 2021. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiology and Biochemistry, 165: 200-206.
  • Ahmad, S., Kamran, M., Ding, R., Meng, X., Wang, H., Ahmad, I., Fahad, S., Han, Q., 2019. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 7:e7793. https://doi.org/10.7717/peerj.7793
  • Ahmed, M., Kamran, M., Asif, M., Qureshi, R., 2014. Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: A review. Sustainability, 14(8): 4525. https://doi.org/10.3390/su14084525
  • Allen, C. D., Breshears, D. D., McDowell, N. G., 2015. On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere, 6(8): 1-55.
  • Asgari, F., Majd, A., Jonoubi, P., Najafi, F., 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant physiology and biochemistry, 127: 152-160.
  • Ayan, S., 2007. Kaplı Fidan Üretimi. Fidan Standardizasyonu: Standart Fidan Yetiştirmenin Biyolojik ve Teknik Esasları (Ed., Yahyaoğlu, Z., Genç, M.), Musa Genç Kitaplığı Bilimsel Yayınlar, ss: 301-352.
  • Balekoglu, S., Caliskan, S., Dirik, H., Rosner, S., 2023a. Response to drought stress differs among Pinus pinea provenances. Forest Ecology and Management, 531, 120779.
  • Balekoglu, S., Caliskan, S., Makineci, E., Dirik, H., 2023b. An experimental assessment of carbon and nitrogen allocation in Pinus pinea populations under drought stress and rewatering treatment. Environmental and Experimental Botany, 210, 105334. Barrs, H.D., Weatherley, P.E., 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3): 413-428.
  • Boydak, M., Çalışkan, S., 2021. Ağaçlandırma. Ormancılığı Geliştirme ve Orman Yangınları ile Mücadele Hizmetlerini Destekleme Vakfı (OGEM-VAK) Yayını, CTA Tanıtım Baskı İstanbul.
  • Boydak, M., Çalışkan, S., 2015. Afforestation in Arid and Semi-Arid Regions. The General Directorate of Combating Desertification and Erosion Publication, Ankara.
  • Camarero, J. J., Gazol, A., Tardif, J. C., Conciatori, F., 2015. Attributing forest responses to global‐change drivers: limited evidence of a CO2‐fertilization effect in Iberian pine growth. Journal of Biogeography, 42(11): 2220-2233.
  • Caminero, L., Génova, M., Camarero, J. J., Sánchez-Salguero, R., 2018. Growth responses to climate and drought at the southernmost European limit of Mediterranean Pinus pinaster forests. Dendrochronologia, 48: 20-29.
  • Carneiro-Carvalho, A., Pinto, T., Gomes-Laranjo, J., Anjos, R., 2023. The potential of SiK® fertilization in the resilience of chestnut plants to drought—a biochemical study. Frontiers in Plant Science, 14: 1120226. https://doi.org/10.3389/fpls.2023.1120226.
  • Chen, W., Yao, X., Cai, K., Chen, J., 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142: 67–76.
  • Colangelo, M., Camarero, J.J., Gazol, A., Piovesan, G., Borghetti, M., Baliva, M., Gentilesca, T., Rita, A., Schettino, A., Ripullone, F., 2021. Mediterranean old-growth forests exhibit resistance to climate warming. Science of The Total Environment, 801: 149684.
  • Coskun, D., Britto, D.T., Huynh, W. Q., Kronzucker, H.J., 2016. The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 7: 1072.
  • Çalışkan, S., Balekoğlu, S., Dirik, H.G., 2023. Orman ağaçlarında kuraklık stresi. İklim Değişikliği Orman Ekosistemlerinde Etkileri ve Yönetimi (Ed., Ayan, S.), Palme Yayın Dağıtım, Ankara, ss: 29-51.
  • Çalışkan, S., Boydak, M., 2017. Afforestation of arid and semiarid ecosystems in Turkey. Turkish Journal of Agriculture and Forestry, 41:317–330.
  • Çiçek, N., Cengil, B., Yucedag, C., 2022. Bitki besin elementlerinin önemi ve orman fidanlıklarında gübrelemenin rolü. Theoretical and Applied Forestry, 2(1): 26-32.
  • Deligöz, A., 2009. Anadolu karaçamı (Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe) fidanlarında sulama programının hazırlanmasında bitki su potansiyeli değerlerinin kullanımı. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 10(2): 51-65.
  • Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2): 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
  • Guntzer, F., Keller, C., Meunier, J.D., 2012. Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32: 201–213.
  • Güner, Ş., Çömez, A., Karataş, R., Genç, M., 2012. Yetiştirme sıklığının Anadolu karaçamı fidanlarının dikim başarısına etkisi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 62(2): 89-96.
  • Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D.D., Allen, C. D., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13(1):1761.
  • Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N.G., Powers, J.S., Pugh, T.A.M., Ruthrof, K.X., Allen, C.D., 2022. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73(1): 673-702. Heras-Marcial, M., Aldrete, A., Gómez-Guerrero, A., Rodríguez-Trejo, D.A., 2023. Influence of fertilization on survival and growth of Pinus patula Schiede ex Schltdl. & Cham. under nursery and field conditions. Revista Chapingo serie ciencias forestales y del ambiente, 29(1): 3-14.
  • Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L., 2018. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9: 393.
  • Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., Meyer, L. A. (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press.
  • Kalaji, H.M., Bąba, W., Gediga, K., Goltsev, V., Samborska, I. A., Cetner, M.D., Dimitrova, S., Piszcz, U., Bielecki, K., Karmowska, K., Dankov, K., Kompała-Bąba, A., 2018. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynthesis Research, 136: 329-343.
  • Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., Rockström, J., Scheffer, M., Schellnhuber, H.J., Steffen, W., Lenton, T. M., 2022. Climate endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences, 119(34): e2108146119.
  • Korolyova, N., Buechling, A., Duraciová, R., Zabihi, K., Turcˇáni, M., Svoboda, M., Blaha, J., Swarts, K., Polácˇek, M., Hradecký, J., Červenka, J., Nmcˇák, P., Schlyter, F., Jakuš, R., 2022. The last trees standing: Climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agricultural and Forest Meteorology, 322: 109025.
  • Liu, H., Sultan, M.A.R.F., Liu, X., Zhang, J., Yu, F., Zhao, H., 2015. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought tolerant wild wheat (Triticum boeoticum). Plos One 10: e0121852.
  • Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y., Guo, T., 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35: 1–10.
  • Manivannan, A., Ahn, Y.K., 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science, 8:1346.
  • Maxwell, K., Johnson, G. N., 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345): 659-668.
  • McDowell, N.G., Allen, C.D., 2015. Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5:669–672.
  • Meehl, G.A., Tebaldi, C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st Century. Science, 305(5686):994–997. https://doi.org/10.1126/science.1098704
  • Murchie, E.H., Lawson, T., 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13): 3983–3998.
  • Oszako, T., Kowalczyk, K., Zalewska, W., Kukina, O., Nowakowska, J. A., Rutkiewicz, A., Bakier, S., Borowik, P., 2023. Feasibility of using a silicon preparation to promote growth of forest seedlings: application to pine (Pinus sylvestris) and Oak (Quercus robur). Forests, 14(3): 1-18.
  • Perry, A., Beaton, J. K., Stockan, J. A., Iason, G. R., Cottrell, J. E., Cavers, S., 2025. Tree nursery environments and their effect on early trait variation. Forestry: An International Journal of Forest Research, cpaf011: 1-12.
  • Rios, J.J., Martinez-Ballesta, M.C., Ruiz, J.M., Blasco, B., Carvajal, M., 2017. Siliconmediated improvement in plant salinity tolerance: the role of aquaporins. Frontiers in Plant Science, 8: 948.
  • Sanda, S., Yoshida, K., Kumano, M., Kawamura, T., Munekage, Y.N., Akashi, K., Yokota, A., 2011. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. Physiologia Plantarum, 142: 247–264.
  • Semenova, N. A., Burmistrov, D. E., Shumeyko, S. A., Gudkov, S. V., 2024. Fertilizers based on nanoparticles as sources of macro-and microelements for plant crop growth: A review. Agronomy, 14(8): 1646.
  • Souri, Z., Khanna, K., Karimi, N., Ahmad, P., 2021. Silicon and plants: current knowledge and future prospects. Journal of Plant Growth Regulation, 40(3): 906-925.
  • Tai, X., Mackay, D.S., Ewers, B.E., Parsekian, A.D., Beverly, D., Speckman, H., Brookd, P.D., Anderegg, W.R., 2019. Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer forest. Journal of Geophysical Research Biogeosciences, 124(11): 3555-3568.
  • Vaculík, M., Lukačová, Z., Bokor, B., Martinka, M., Tripathi, D. K., Lux, A., 2020. Alleviation mechanisms of metal (loid) stress in plants by silicon: a review. Journal of Experimental Botany, 71(21): 6744-6757.
  • Verma, K. K., Song, X. P., Zeng, Y., Guo, D. J., Singh, M., Rajput, V. D., ... Li, Y. R., 2021. Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 166: 582-592.
  • Verma, K.K., Song, X.-P., Li, D.M., Singh, M., Rajput, V.D., Malviya, M.K., Minkina, T., Singh, R.K., Singh, P., Li, Y.R., 2020. Interactive role of silicon and plant–rhizobacteria mitigating abiotic stresses: a new approach for sustainable agriculture and climate change. Plants, 9: 1055. https://doi.org/10.3390/ plants9091055
  • Vilela, R.D., Bezerra, B.K.L., Froehlich, A., Endres, L., 2017. Antioxidant system is essential to increase drought tolerance of sugarcane. Annals of Applied Biology, 171:451–463.
  • Wang, S., Liu, P., Chen, D., Yin, L., Li, H., Deng, X., 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontiers in Plant Science, 6, 759: 1-10
  • Wang, Y., Zhang, B., Jiang, D., Chen, G., 2019. Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environmental and Experimental Botany,158: 117–124.
  • Xu, J., Guo, L., Liu, L., 2022. Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism. Environmental and Experimental Botany, 201:104974.
  • Yahyaoğlu, Z., Genç, M., 2007. Fidan Standardizasyonu. Süleyman Demirel Üniversitesi, Orman Fakültesi Yayını, Isparta.
  • Yan, G., Nikolic, M., Ye, M., Xiao, Z., Liang, Y., 2018. Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17, 2138–2150. https://doi.org/10.1016/s2095-3119(18)62037-4.
  • Yavas¸, I., Aydın, U.N.A.Y., 2017. The role of silicon under biotic and abiotic stress conditions. Turkish Journal of Agricultural Research, 4: 204–209.
  • Younis, A.A., Khattab, H., Emam, M.M., 2020. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biologia Plantarum, 64(1): 343-352
  • Zhou, Y., Lam, H.M., Zhang, J., 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58: 1207–1217.
  • Zhu, Y., Gong, H., 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34: 455–472. https://doi.org/10.1007/s13593-013-0194-1
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Silviculture
Journal Section Orijinal Araştırma Makalesi
Authors

Safa Balekoğlu 0000-0002-7870-3641

Publication Date September 30, 2025
Submission Date June 5, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 26 Issue: 3

Cite

APA Balekoğlu, S. (2025). Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi. Turkish Journal of Forestry, 26(3), 252-261. https://doi.org/10.18182/tjf.1715300
AMA Balekoğlu S. Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi. Turkish Journal of Forestry. September 2025;26(3):252-261. doi:10.18182/tjf.1715300
Chicago Balekoğlu, Safa. “Sahil çamı Fidanlarında Kuraklık Stresine Karşı Silikon Bazlı Gübrelemenin Etkisi”. Turkish Journal of Forestry 26, no. 3 (September 2025): 252-61. https://doi.org/10.18182/tjf.1715300.
EndNote Balekoğlu S (September 1, 2025) Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi. Turkish Journal of Forestry 26 3 252–261.
IEEE S. Balekoğlu, “Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi”, Turkish Journal of Forestry, vol. 26, no. 3, pp. 252–261, 2025, doi: 10.18182/tjf.1715300.
ISNAD Balekoğlu, Safa. “Sahil çamı Fidanlarında Kuraklık Stresine Karşı Silikon Bazlı Gübrelemenin Etkisi”. Turkish Journal of Forestry 26/3 (September2025), 252-261. https://doi.org/10.18182/tjf.1715300.
JAMA Balekoğlu S. Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi. Turkish Journal of Forestry. 2025;26:252–261.
MLA Balekoğlu, Safa. “Sahil çamı Fidanlarında Kuraklık Stresine Karşı Silikon Bazlı Gübrelemenin Etkisi”. Turkish Journal of Forestry, vol. 26, no. 3, 2025, pp. 252-61, doi:10.18182/tjf.1715300.
Vancouver Balekoğlu S. Sahil çamı fidanlarında kuraklık stresine karşı silikon bazlı gübrelemenin etkisi. Turkish Journal of Forestry. 2025;26(3):252-61.