Review
BibTex RIS Cite

Senolytics and Their Effects on Various Diseases

Year 2024, Volume: 3 Issue: 7, 105 - 112, 31.12.2024
https://doi.org/10.56150/tjhsl.1345120

Abstract

Senescence is the result of a process that is physiological for cells. With aging, there is an increase in the number of senescent cells in organisms, and these cells produce a number of compounds known as senescence-associated secretory phenotype (SASP). These compounds secreted by senescent cells cause healthy cells in the microenvironment to exposure senescence. Therefore, preventing the accumulation of senescent cells in tissues is important for healthy cells. Senolytics are compounds that can specifically eliminate senescent cells. One of the most important differences between a cell in its normal physiological process and a senescent cell is that senescent cells are resistant to apoptosis. Although senolytics have different mechanisms of action, they jointly target the anti-apoptotic pathways of the cells and the compounds in these pathways, thereby enabling the senescent cells to undergo apoptosis and be destroyed. In addition, accumulation of senescent cells in tissues increases the risk of susceptibility to various chronic diseases, especially cardiovascular diseases, neurodegenerative diseases, cancer and kidney diseases. Therefore, it is forecasted that inhibiting the accumulation of senescent cells in tissues may reduce the risk of disease. In this review study, the effects of senolytic compound examples such as Dasatinib, Quercetin, Navitoxlac (ABT-263) and Fisetin on cardiovascular diseases, neurodegenerative diseases, cancer, kidney diseases and inflammation were briefly summarized.

References

  • Beck, J., Horikawa, I. and Harris, C. (2020). Cellular Senescence: Mechanisms, Morphology, and Mouse Models. Veterinary Pathology, 57(6), 747-757. https://doi.org/10.1177/0300985820943841/ASSET/IMAGES/LARGE/10.1177_0300985820943841-FIG2.JPEG
  • Birch, J. and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes and development, 34(23-24), 1565-1576. https://doi.org/10.1101/GAD.343129.120
  • Cerella, C., Grandjenette, C., Dicato, M. and Diederich, M. (2016). Roles of Apoptosis and Cellular Senescence in Cancer and Aging. Current drug targets, 17(4), 405-415. https://doi.org/10.2174/1389450116666150202155915
  • Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204. https://doi.org/10.18632/ONCOTARGET.23208
  • Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J. and van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. https://doi.org/10.1038/nrd.2017.116
  • de Mera-Rodríguez, J. A., Álvarez-Hernán, G., Gañán, Y., Martín-Partido, G., Rodríguez-León, J. and Francisco-Morcillo, J. (2021a). Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Frontiers in Cell and Developmental Biology, 9, 36. https://doi.org/10.3389/FCELL.2021.623175/BIBTEX
  • de Mera-Rodríguez, J. A., Álvarez-Hernán, G., Gañán, Y., Martín-Partido, G., Rodríguez-León, J. and Francisco-Morcillo, J. (2021b). Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Frontiers in Cell and Developmental Biology, 9, 36. https://doi.org/10.3389/FCELL.2021.623175/BIBTEX
  • Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. and Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols 2009 4:12, 4(12), 1798-1806. https://doi.org/10.1038/nprot.2009.191
  • Demirbaş Karadeniz, Z., Üniversitesi, T., Anabilim, H., Trabzon, D., Akeren, Z. and Hintistan, S. (2021). KANSER HASTALARININ SEMPTOM YÖNETİMİNDE AROMATERAPİ KULLANIMI USAGE OF AROMATHERAPY IN SYMPTOM MANAGEMENT IN CANCER PATIENTS. SAUHSD, 4(3), 136-154. https://doi.org/10.54803/sauhsd.837654
  • Epstein, M. (1996). Aging and the kidney. Journal of the American Society of Nephrology, 7(8), 1106-1122. https://doi.org/10.1681/ASN.V781106
  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D. and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer, 136(5), E359-E386. https://doi.org/10.1002/IJC.29210
  • Gire, V. and Dulic, V. (2015). Senescence from G2 arrest, revisited. https://doi.org/10.1080/15384101.2014.1000134, 14(3), 297-304. https://doi.org/10.1080/15384101.2014.1000134
  • Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37(3), 614-636. https://doi.org/10.1016/0014-4827(65)90211-9
  • Hernández-Silva, D., Cantón-Sandoval, J., Martínez-Navarro, F. J., Pérez-Sánchez, H., de Oliveira, S., Mulero, V., Alcaraz-Pérez, F. and Cayuela, M. L. (2022). Senescence-Independent Anti-Inflammatory Activity of the Senolytic Drugs Dasatinib, Navitoclax, and Venetoclax in Zebrafish Models of Chronic Inflammation. International Journal of Molecular Sciences, 23(18), 10468. https://doi.org/10.3390/IJMS231810468/S1
  • Hickson, L. T. J., Langhi Prata, L. G. P., Bobart, S. A., Evans, T. K., Giorgadze, N., Hashmi, S. K., Herrmann, S. M., Jensen, M. D., Jia, Q., Jordan, K. L., Kellogg, T. A., Khosla, S., Koerber, D. M., Lagnado, A. B., Lawson, D. K., LeBrasseur, N. K., Lerman, L. O., McDonald, K. M., McKenzie, T. J., … Kirkland, J. L. (2019). Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 47, 446-456. https://doi.org/10.1016/J.EBIOM.2019.08.069
  • Hwang, H. T. V., Tran, D. T., Rebuffatti, M. N., Li, C. S. and Knowlton, A. A. (2018). Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS ONE, 13(1). https://doi.org/10.1371/JOURNAL.PONE.0190374
  • Ishige, K., Schubert, D. and Sagara, Y. (2001). Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free radical biology and medicine, 30(4), 433-446. https://doi.org/10.1016/S0891-5849(00)00498-6
  • Iske, J., Seyda, M., Heinbokel, T., Maenosono, R., Minami, K., Nian, Y., Quante, M., Falk, C. S., Azuma, H., Martin, F., Passos, J. F., Niemann, C. U., Tchkonia, T., Kirkland, J. L., Elkhal, A. and Tullius, S. G. (2020). Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. https://doi.org/10.1038/s41467-020-18039-x
  • Islam, M. T., Tuday, E., Allen, S., Kim, J., Trott, D. W., Holland, W. L., Donato, A. J. and Lesniewski, L. A. (2023). Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell, 22(2), e13767. https://doi.org/10.1111/ACEL.13767
  • Kirkland, J. L. and Tchkonia, T. (2020). Senolytic drugs: from discovery to translation. Journal of Internal Medicine, 288(5), 518. https://doi.org/10.1111/JOIM.13141
  • Lall, R. K., Adhami, V. M. and Mukhtar, H. (2016). Dietary flavonoid fisetin for cancer prevention and treatment. Molecular nutrition and food research, 60(6), 1396. https://doi.org/10.1002/MNFR.201600025
  • Lee, S., Wang, E. Y., Steinberg, A. B., Walton, C. C., Chinta, S. J. and Andersen, J. K. (2021). A guide to senolytic intervention in neurodegenerative disease. Mechanisms of Ageing and Development, 200. https://doi.org/10.1016/J.MAD.2021.111585
  • Maher, P. (2009). Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes and Nutrition, 4(4), 297. https://doi.org/10.1007/S12263-009-0142-5
  • Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F. and Giordano, A. (2020). Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 10(3). https://doi.org/10.3390/BIOM10030420
  • Ohtani, N. (2022). The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflammation and Regeneration, 42(1), 1-8. https://doi.org/10.1186/S41232-022-00197-8/FIGURES/3
  • Overview of Cellular Senescence and Aging | Cell Signaling Technology. (t.y.). Geliş tarihi 20 Şubat 2023, gönderen https://www.cellsignal.com/science-resources/overview-of-cellular-senescence
  • Owens, W. A., Walaszczyk, A., Spyridopoulos, I., Dookun, E. and Richardson, G. D. (2021). Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mechanisms of Ageing and Development, 198. https://doi.org/10.1016/J.MAD.2021.111540
  • Özkan, Ö. P., Kemal Büyükünal, S., Yiğit, Z., İnci, Y., Şakar, F. Ş., Özçelik Ersü, D., Üniversitesi, İ. A., Bilimleri, S., Beslenme, Y., Bölümü, D., Üniversitesi, İ., Enstitüsü, K. & Ad, K. (2019). Kardiyovasküler hastalık tanısı almış hastaların sağlıklı yaşam biçimi davranışlarının değerlendirilmesi. Mersin Univ Saglık Bilim Derg, 12(1), 22–31. https://doi.org/10.26559/mersinsbd.407399
  • Pal, H. C., Pearlman, R. L. and Afaq, F. (2016). Fisetin and Its Role in Chronic Diseases. Advances in experimental medicine and biology, 928, 213-244. https://doi.org/10.1007/978-3-319-41334-1_10
  • Rayess, H., Wang, M. B. and Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International Journal of Cancer. Journal International du Cancer, 130(8), 1715. https://doi.org/10.1002/IJC.27316
  • Sieben, C. J., Sturmlechner, I., van de Sluis, B. and van Deursen, J. M. (2018). Two-Step Senescence-Focused Cancer Therapies. Trends in cell biology, 28(9), 723-737. https://doi.org/10.1016/J.TCB.2018.04.006
  • Sun, X. and Kaufman, P. D. (t.y.). Ki-67: more than a proliferation marker. https://doi.org/10.1007/s00412-018-0659-8
  • Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., … Tsao, C. W. (2021). Heart Disease and Stroke Statistics - 2021 Update: A Report From the American Heart Association. Circulation, 143(8), E254-E743. https://doi.org/10.1161/CIR.0000000000000950/FORMAT/EPUB
  • Wang, L., Lankhorst, L. and Bernards, R. (t.y.). Exploiting senescence for the treatment of cancer. https://doi.org/10.1038/s41568-022-00450-9
  • Wang, Y., He, Y., Rayman, M. P. and Zhang, J. (2021). Prospective Selective Mechanism of Emerging Senolytic Agents Derived from Flavonoids. Journal of Agricultural and Food Chemistry, 69(42), 12418-12423. https://doi.org/10.1021/ACS.JAFC.1C04379/ASSET/IMAGES/MEDIUM/JF1C04379_0003.GIF
  • Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., George, J., Danson, S. and Kirkland, J. L. (2020). cancers Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers, 12. https://doi.org/10.3390/cancers12082134
  • Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J. and Robbins, P. D. (2021). Recent advances in the discovery of senolytics. Mechanisms of Ageing and Development, 200, 111587. https://doi.org/10.1016/J.MAD.2021.111587
  • Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’hara, S. P., Larusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., Lebrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging cell, 14(4), 644-658. https://doi.org/10.1111/ACEL.12344
  • Zia, A., Farkhondeh, T., Pourbagher-Shahri, A. M. and Samarghandian, S. (2021). The role of curcumin in aging and senescence: Molecular mechanisms. Biomedicine and Pharmacotherapy, 134, 111119. https://doi.org/10.1016/J.BIOPHA.2020.111119
Year 2024, Volume: 3 Issue: 7, 105 - 112, 31.12.2024
https://doi.org/10.56150/tjhsl.1345120

Abstract

References

  • Beck, J., Horikawa, I. and Harris, C. (2020). Cellular Senescence: Mechanisms, Morphology, and Mouse Models. Veterinary Pathology, 57(6), 747-757. https://doi.org/10.1177/0300985820943841/ASSET/IMAGES/LARGE/10.1177_0300985820943841-FIG2.JPEG
  • Birch, J. and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes and development, 34(23-24), 1565-1576. https://doi.org/10.1101/GAD.343129.120
  • Cerella, C., Grandjenette, C., Dicato, M. and Diederich, M. (2016). Roles of Apoptosis and Cellular Senescence in Cancer and Aging. Current drug targets, 17(4), 405-415. https://doi.org/10.2174/1389450116666150202155915
  • Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204. https://doi.org/10.18632/ONCOTARGET.23208
  • Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J. and van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. https://doi.org/10.1038/nrd.2017.116
  • de Mera-Rodríguez, J. A., Álvarez-Hernán, G., Gañán, Y., Martín-Partido, G., Rodríguez-León, J. and Francisco-Morcillo, J. (2021a). Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Frontiers in Cell and Developmental Biology, 9, 36. https://doi.org/10.3389/FCELL.2021.623175/BIBTEX
  • de Mera-Rodríguez, J. A., Álvarez-Hernán, G., Gañán, Y., Martín-Partido, G., Rodríguez-León, J. and Francisco-Morcillo, J. (2021b). Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Frontiers in Cell and Developmental Biology, 9, 36. https://doi.org/10.3389/FCELL.2021.623175/BIBTEX
  • Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. and Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nature Protocols 2009 4:12, 4(12), 1798-1806. https://doi.org/10.1038/nprot.2009.191
  • Demirbaş Karadeniz, Z., Üniversitesi, T., Anabilim, H., Trabzon, D., Akeren, Z. and Hintistan, S. (2021). KANSER HASTALARININ SEMPTOM YÖNETİMİNDE AROMATERAPİ KULLANIMI USAGE OF AROMATHERAPY IN SYMPTOM MANAGEMENT IN CANCER PATIENTS. SAUHSD, 4(3), 136-154. https://doi.org/10.54803/sauhsd.837654
  • Epstein, M. (1996). Aging and the kidney. Journal of the American Society of Nephrology, 7(8), 1106-1122. https://doi.org/10.1681/ASN.V781106
  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D. and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer, 136(5), E359-E386. https://doi.org/10.1002/IJC.29210
  • Gire, V. and Dulic, V. (2015). Senescence from G2 arrest, revisited. https://doi.org/10.1080/15384101.2014.1000134, 14(3), 297-304. https://doi.org/10.1080/15384101.2014.1000134
  • Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37(3), 614-636. https://doi.org/10.1016/0014-4827(65)90211-9
  • Hernández-Silva, D., Cantón-Sandoval, J., Martínez-Navarro, F. J., Pérez-Sánchez, H., de Oliveira, S., Mulero, V., Alcaraz-Pérez, F. and Cayuela, M. L. (2022). Senescence-Independent Anti-Inflammatory Activity of the Senolytic Drugs Dasatinib, Navitoclax, and Venetoclax in Zebrafish Models of Chronic Inflammation. International Journal of Molecular Sciences, 23(18), 10468. https://doi.org/10.3390/IJMS231810468/S1
  • Hickson, L. T. J., Langhi Prata, L. G. P., Bobart, S. A., Evans, T. K., Giorgadze, N., Hashmi, S. K., Herrmann, S. M., Jensen, M. D., Jia, Q., Jordan, K. L., Kellogg, T. A., Khosla, S., Koerber, D. M., Lagnado, A. B., Lawson, D. K., LeBrasseur, N. K., Lerman, L. O., McDonald, K. M., McKenzie, T. J., … Kirkland, J. L. (2019). Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 47, 446-456. https://doi.org/10.1016/J.EBIOM.2019.08.069
  • Hwang, H. T. V., Tran, D. T., Rebuffatti, M. N., Li, C. S. and Knowlton, A. A. (2018). Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS ONE, 13(1). https://doi.org/10.1371/JOURNAL.PONE.0190374
  • Ishige, K., Schubert, D. and Sagara, Y. (2001). Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free radical biology and medicine, 30(4), 433-446. https://doi.org/10.1016/S0891-5849(00)00498-6
  • Iske, J., Seyda, M., Heinbokel, T., Maenosono, R., Minami, K., Nian, Y., Quante, M., Falk, C. S., Azuma, H., Martin, F., Passos, J. F., Niemann, C. U., Tchkonia, T., Kirkland, J. L., Elkhal, A. and Tullius, S. G. (2020). Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. https://doi.org/10.1038/s41467-020-18039-x
  • Islam, M. T., Tuday, E., Allen, S., Kim, J., Trott, D. W., Holland, W. L., Donato, A. J. and Lesniewski, L. A. (2023). Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell, 22(2), e13767. https://doi.org/10.1111/ACEL.13767
  • Kirkland, J. L. and Tchkonia, T. (2020). Senolytic drugs: from discovery to translation. Journal of Internal Medicine, 288(5), 518. https://doi.org/10.1111/JOIM.13141
  • Lall, R. K., Adhami, V. M. and Mukhtar, H. (2016). Dietary flavonoid fisetin for cancer prevention and treatment. Molecular nutrition and food research, 60(6), 1396. https://doi.org/10.1002/MNFR.201600025
  • Lee, S., Wang, E. Y., Steinberg, A. B., Walton, C. C., Chinta, S. J. and Andersen, J. K. (2021). A guide to senolytic intervention in neurodegenerative disease. Mechanisms of Ageing and Development, 200. https://doi.org/10.1016/J.MAD.2021.111585
  • Maher, P. (2009). Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes and Nutrition, 4(4), 297. https://doi.org/10.1007/S12263-009-0142-5
  • Mijit, M., Caracciolo, V., Melillo, A., Amicarelli, F. and Giordano, A. (2020). Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 10(3). https://doi.org/10.3390/BIOM10030420
  • Ohtani, N. (2022). The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflammation and Regeneration, 42(1), 1-8. https://doi.org/10.1186/S41232-022-00197-8/FIGURES/3
  • Overview of Cellular Senescence and Aging | Cell Signaling Technology. (t.y.). Geliş tarihi 20 Şubat 2023, gönderen https://www.cellsignal.com/science-resources/overview-of-cellular-senescence
  • Owens, W. A., Walaszczyk, A., Spyridopoulos, I., Dookun, E. and Richardson, G. D. (2021). Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mechanisms of Ageing and Development, 198. https://doi.org/10.1016/J.MAD.2021.111540
  • Özkan, Ö. P., Kemal Büyükünal, S., Yiğit, Z., İnci, Y., Şakar, F. Ş., Özçelik Ersü, D., Üniversitesi, İ. A., Bilimleri, S., Beslenme, Y., Bölümü, D., Üniversitesi, İ., Enstitüsü, K. & Ad, K. (2019). Kardiyovasküler hastalık tanısı almış hastaların sağlıklı yaşam biçimi davranışlarının değerlendirilmesi. Mersin Univ Saglık Bilim Derg, 12(1), 22–31. https://doi.org/10.26559/mersinsbd.407399
  • Pal, H. C., Pearlman, R. L. and Afaq, F. (2016). Fisetin and Its Role in Chronic Diseases. Advances in experimental medicine and biology, 928, 213-244. https://doi.org/10.1007/978-3-319-41334-1_10
  • Rayess, H., Wang, M. B. and Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International Journal of Cancer. Journal International du Cancer, 130(8), 1715. https://doi.org/10.1002/IJC.27316
  • Sieben, C. J., Sturmlechner, I., van de Sluis, B. and van Deursen, J. M. (2018). Two-Step Senescence-Focused Cancer Therapies. Trends in cell biology, 28(9), 723-737. https://doi.org/10.1016/J.TCB.2018.04.006
  • Sun, X. and Kaufman, P. D. (t.y.). Ki-67: more than a proliferation marker. https://doi.org/10.1007/s00412-018-0659-8
  • Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., … Tsao, C. W. (2021). Heart Disease and Stroke Statistics - 2021 Update: A Report From the American Heart Association. Circulation, 143(8), E254-E743. https://doi.org/10.1161/CIR.0000000000000950/FORMAT/EPUB
  • Wang, L., Lankhorst, L. and Bernards, R. (t.y.). Exploiting senescence for the treatment of cancer. https://doi.org/10.1038/s41568-022-00450-9
  • Wang, Y., He, Y., Rayman, M. P. and Zhang, J. (2021). Prospective Selective Mechanism of Emerging Senolytic Agents Derived from Flavonoids. Journal of Agricultural and Food Chemistry, 69(42), 12418-12423. https://doi.org/10.1021/ACS.JAFC.1C04379/ASSET/IMAGES/MEDIUM/JF1C04379_0003.GIF
  • Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., George, J., Danson, S. and Kirkland, J. L. (2020). cancers Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers, 12. https://doi.org/10.3390/cancers12082134
  • Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J. and Robbins, P. D. (2021). Recent advances in the discovery of senolytics. Mechanisms of Ageing and Development, 200, 111587. https://doi.org/10.1016/J.MAD.2021.111587
  • Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’hara, S. P., Larusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., Lebrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging cell, 14(4), 644-658. https://doi.org/10.1111/ACEL.12344
  • Zia, A., Farkhondeh, T., Pourbagher-Shahri, A. M. and Samarghandian, S. (2021). The role of curcumin in aging and senescence: Molecular mechanisms. Biomedicine and Pharmacotherapy, 134, 111119. https://doi.org/10.1016/J.BIOPHA.2020.111119
There are 39 citations in total.

Details

Primary Language English
Subjects Cell Metabolism
Journal Section Articles
Authors

Kübra Danış Oruç 0000-0003-0565-2297

Ayşe Gül Mutlu 0000-0002-2037-6473

Publication Date December 31, 2024
Published in Issue Year 2024 Volume: 3 Issue: 7

Cite

APA Danış Oruç, K., & Mutlu, A. G. (2024). Senolytics and Their Effects on Various Diseases. Turkish Journal of Health Science and Life, 3(7), 105-112. https://doi.org/10.56150/tjhsl.1345120