Research Article
BibTex RIS Cite

Upper and Lower θp-Continuous Multifunctions

Year 2024, , 16 - 20, 30.06.2024
https://doi.org/10.47000/tjmcs.1003126

Abstract

We introduce two new types of multifunctions, namely upper (lower) $\theta $p$-$continuous multifunctions, between topological spaces. Besides characterising these multifunctions, we study some properties of upper $\theta $p$-$continuous multifunctions.

References

  • Banzaru, T., Multifunctions and M-product spaces, Bull. Stiin. Teh. Inst. Politeh Timisoara Ser. Mat. Fiz Mer. Teor. Apl., 17(1972), 17–23.
  • Berge, C., Espaces TopologiquesFfonctions Multivoques, Dunod, Paris, 1959.
  • Cho, S.H., A note on strongly θ-precontinuous functions, Acta Math. Hungar., 101(2003), 173–178.
  • Dontchev, J., Ganster M., Noiri, T., On p-closed spaces, Internat. J. Math. Math. Sci., 24(2002), 203–212.
  • El-Deeb, N., Hasanein, I.A., Mashhour, A.S., Noiri, T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27(75)(1983), 311–315.
  • Mashhour, A.S., Abd El-Monsef M.E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Egypt, 53(1982), 47–53.
  • Mashhour, A.S., Hasanein, I.A., El-Deeb, S.N., A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math., 13(1982), 1119–1123.
  • Mukherjee, M.N., Raychaudhuri, S., Sinha, P., On upper and lower θ∗-continuous multifunctions, Southeast Asian Bulletin of Mathematics, 26(2002), 841–855.
  • Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961–970.
  • Noiri, T., Strongly θ-precontinuous functions, Acta Math. Hungar., 90(2001), 307–316.
  • Nour, T.M.J., Contributions to the Theory of Bitopological Spaces, Ph.D. Thesis, Univ. of Delhi, 1989.
  • Popa, V., Some properties of H-almost continuous multifunctions, Probl. Math., 10(1988), 9–26.
  • Velicko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103–118.
  • Whyburn, G.T., Retracting multifunctions, Proc. Nat. Acad. Sci. U.S.A., 59(1968), 343–348.
Year 2024, , 16 - 20, 30.06.2024
https://doi.org/10.47000/tjmcs.1003126

Abstract

References

  • Banzaru, T., Multifunctions and M-product spaces, Bull. Stiin. Teh. Inst. Politeh Timisoara Ser. Mat. Fiz Mer. Teor. Apl., 17(1972), 17–23.
  • Berge, C., Espaces TopologiquesFfonctions Multivoques, Dunod, Paris, 1959.
  • Cho, S.H., A note on strongly θ-precontinuous functions, Acta Math. Hungar., 101(2003), 173–178.
  • Dontchev, J., Ganster M., Noiri, T., On p-closed spaces, Internat. J. Math. Math. Sci., 24(2002), 203–212.
  • El-Deeb, N., Hasanein, I.A., Mashhour, A.S., Noiri, T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 27(75)(1983), 311–315.
  • Mashhour, A.S., Abd El-Monsef M.E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Egypt, 53(1982), 47–53.
  • Mashhour, A.S., Hasanein, I.A., El-Deeb, S.N., A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math., 13(1982), 1119–1123.
  • Mukherjee, M.N., Raychaudhuri, S., Sinha, P., On upper and lower θ∗-continuous multifunctions, Southeast Asian Bulletin of Mathematics, 26(2002), 841–855.
  • Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961–970.
  • Noiri, T., Strongly θ-precontinuous functions, Acta Math. Hungar., 90(2001), 307–316.
  • Nour, T.M.J., Contributions to the Theory of Bitopological Spaces, Ph.D. Thesis, Univ. of Delhi, 1989.
  • Popa, V., Some properties of H-almost continuous multifunctions, Probl. Math., 10(1988), 9–26.
  • Velicko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103–118.
  • Whyburn, G.T., Retracting multifunctions, Proc. Nat. Acad. Sci. U.S.A., 59(1968), 343–348.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nazlı Uresin 0000-0001-5654-1074

Aynur Keskin Kaymakcı 0000-0001-5909-8477

Publication Date June 30, 2024
Published in Issue Year 2024

Cite

APA Uresin, N., & Keskin Kaymakcı, A. (2024). Upper and Lower θp-Continuous Multifunctions. Turkish Journal of Mathematics and Computer Science, 16(1), 16-20. https://doi.org/10.47000/tjmcs.1003126
AMA Uresin N, Keskin Kaymakcı A. Upper and Lower θp-Continuous Multifunctions. TJMCS. June 2024;16(1):16-20. doi:10.47000/tjmcs.1003126
Chicago Uresin, Nazlı, and Aynur Keskin Kaymakcı. “Upper and Lower θp-Continuous Multifunctions”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 16-20. https://doi.org/10.47000/tjmcs.1003126.
EndNote Uresin N, Keskin Kaymakcı A (June 1, 2024) Upper and Lower θp-Continuous Multifunctions. Turkish Journal of Mathematics and Computer Science 16 1 16–20.
IEEE N. Uresin and A. Keskin Kaymakcı, “Upper and Lower θp-Continuous Multifunctions”, TJMCS, vol. 16, no. 1, pp. 16–20, 2024, doi: 10.47000/tjmcs.1003126.
ISNAD Uresin, Nazlı - Keskin Kaymakcı, Aynur. “Upper and Lower θp-Continuous Multifunctions”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 16-20. https://doi.org/10.47000/tjmcs.1003126.
JAMA Uresin N, Keskin Kaymakcı A. Upper and Lower θp-Continuous Multifunctions. TJMCS. 2024;16:16–20.
MLA Uresin, Nazlı and Aynur Keskin Kaymakcı. “Upper and Lower θp-Continuous Multifunctions”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 16-20, doi:10.47000/tjmcs.1003126.
Vancouver Uresin N, Keskin Kaymakcı A. Upper and Lower θp-Continuous Multifunctions. TJMCS. 2024;16(1):16-20.