Research Article
BibTex RIS Cite

Some Results On Silver Riemannian Structures

Year 2022, , 91 - 97, 30.06.2022
https://doi.org/10.47000/tjmcs.1024700

Abstract

Our aim in this paper is to study of silver Riemannian structures on manifold and bundle. An integrability condition and curvature properties for silver Riemannian structure are investigated via the Tachibana operator. Twin silver Riemannian metric is defined and some properties of twin silver Riemannian metric are investigated. Examples of silver structure are given on tangent and cotangent bundles.

References

  • Çayır, H., Operators on metallic Riemannian structures, Honam Math. J., 42(1)(2020), 63-74.
  • Gezer, A., Karaman, Ç., On metallic Riemannian structures, Turk. J. Math., 39(6)(2015), 954-962.
  • Hretcanu, C., Crasmareanu, M., Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), 15-27.
  • Iscan, M., Salimov A.A., On Kahler-Norden manifolds, Proc. Indian Acad. Sci., 119(1)(2009), 71-80.
  • Ocak, F., Notes on the Sasaki metrics in cotangent bundles, Comp.Ren.Bul.Ac., 72(7)(2019), 871-879.
  • Ozkan, M., Peltek, B., A new structure on manifolds:Silver structure, Int Electron J Geom., 9(2)(2016), 59-69.
  • Salimov, A.A., Akbulut, K., Aslanci, S., A note on integrability of almost product Riemannian structures, Arab. J. Sci. Eng. Sect. A Sci., 34(1)(2009), 153-157.
  • Salimov, A.A., Agca, F., Some Properties of Sasakian Metrics in Cotangent Bundles, Mediterr. J. Math., 8(2) (2011), 243-255.
  • Salimov, A.A., Tensor Operators and Their applications. Nova Science Publ. New York, (2013).
  • Spinadel, V.W., The metallic means family and multifractal spectra. Nonlinear Anal. Ser. B: Real World Appl., 36(6)(1999), 721-745.
  • Spinadel, V.W., The metallic means family and forbidden symmetries, Int. Math. J., 2(3)(2002), 279-288.
  • Tachibana, S., Analytic tensor and its generalization, Tohoku Math J., 12(1968), 208-221.
  • Yano K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, (1965).
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, (1973).
Year 2022, , 91 - 97, 30.06.2022
https://doi.org/10.47000/tjmcs.1024700

Abstract

References

  • Çayır, H., Operators on metallic Riemannian structures, Honam Math. J., 42(1)(2020), 63-74.
  • Gezer, A., Karaman, Ç., On metallic Riemannian structures, Turk. J. Math., 39(6)(2015), 954-962.
  • Hretcanu, C., Crasmareanu, M., Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), 15-27.
  • Iscan, M., Salimov A.A., On Kahler-Norden manifolds, Proc. Indian Acad. Sci., 119(1)(2009), 71-80.
  • Ocak, F., Notes on the Sasaki metrics in cotangent bundles, Comp.Ren.Bul.Ac., 72(7)(2019), 871-879.
  • Ozkan, M., Peltek, B., A new structure on manifolds:Silver structure, Int Electron J Geom., 9(2)(2016), 59-69.
  • Salimov, A.A., Akbulut, K., Aslanci, S., A note on integrability of almost product Riemannian structures, Arab. J. Sci. Eng. Sect. A Sci., 34(1)(2009), 153-157.
  • Salimov, A.A., Agca, F., Some Properties of Sasakian Metrics in Cotangent Bundles, Mediterr. J. Math., 8(2) (2011), 243-255.
  • Salimov, A.A., Tensor Operators and Their applications. Nova Science Publ. New York, (2013).
  • Spinadel, V.W., The metallic means family and multifractal spectra. Nonlinear Anal. Ser. B: Real World Appl., 36(6)(1999), 721-745.
  • Spinadel, V.W., The metallic means family and forbidden symmetries, Int. Math. J., 2(3)(2002), 279-288.
  • Tachibana, S., Analytic tensor and its generalization, Tohoku Math J., 12(1968), 208-221.
  • Yano K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, (1965).
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, (1973).
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Rabia Çakan Akpınar 0000-0001-9885-6373

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Çakan Akpınar, R. (2022). Some Results On Silver Riemannian Structures. Turkish Journal of Mathematics and Computer Science, 14(1), 91-97. https://doi.org/10.47000/tjmcs.1024700
AMA Çakan Akpınar R. Some Results On Silver Riemannian Structures. TJMCS. June 2022;14(1):91-97. doi:10.47000/tjmcs.1024700
Chicago Çakan Akpınar, Rabia. “Some Results On Silver Riemannian Structures”. Turkish Journal of Mathematics and Computer Science 14, no. 1 (June 2022): 91-97. https://doi.org/10.47000/tjmcs.1024700.
EndNote Çakan Akpınar R (June 1, 2022) Some Results On Silver Riemannian Structures. Turkish Journal of Mathematics and Computer Science 14 1 91–97.
IEEE R. Çakan Akpınar, “Some Results On Silver Riemannian Structures”, TJMCS, vol. 14, no. 1, pp. 91–97, 2022, doi: 10.47000/tjmcs.1024700.
ISNAD Çakan Akpınar, Rabia. “Some Results On Silver Riemannian Structures”. Turkish Journal of Mathematics and Computer Science 14/1 (June 2022), 91-97. https://doi.org/10.47000/tjmcs.1024700.
JAMA Çakan Akpınar R. Some Results On Silver Riemannian Structures. TJMCS. 2022;14:91–97.
MLA Çakan Akpınar, Rabia. “Some Results On Silver Riemannian Structures”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 1, 2022, pp. 91-97, doi:10.47000/tjmcs.1024700.
Vancouver Çakan Akpınar R. Some Results On Silver Riemannian Structures. TJMCS. 2022;14(1):91-7.