Research Article
BibTex RIS Cite

Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton

Year 2023, , 375 - 381, 31.12.2023
https://doi.org/10.47000/tjmcs.1082849

Abstract

In this paper, we examine 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton. We give some theorems for $W_{0}^{*}$ flat, $\xi-W_{0}^{*}$ flat and $\phi-W_{0}^{*}$ semisymmetric 3-dimensional quasi-Sasakian manifold admitting conformal Ricci soliton. Also we study conformal Ricci soliton on a 3-dimensional quasi-Sasakian manifold satisfying the conditions $W_{0}^{*}(\xi,X).S=0$ and $R(\xi,X).W_{0}^{*}=0$.

References

  • Basu, N., Bhattacharyya A., Conformal Ricci soliton in Kenmotsu manifold, Glob. J. of Adv. Research on Class. Modern Geom., 4(1)(2015), 15–21.
  • Blaga, M.A.,η−Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30(2)(2016), 489–496.
  • Blaga, M.A., Y¨uksel Perktas¸, S., Erdo˘gan, F.E., Acet, B.E., η−Ricci solitons in (ε)−almost paracontact metric manifolds, Glasnik Math., 53(1)(2018), 205–220.
  • Blair, D.E., The theory of quasi-Sasakian structures, J. Diff Geo., 1(1967), 331–345.
  • Calin, C., Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f−Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc., 33(3)(2010), 361–368.
  • Cho, J.T., Kimura M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61(2)(2009), 205–212.
  • De, U.C., Majhi P., φ−semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci., 21(2)(2015), 170–178.
  • De, U.C., Mondal, A.K., 3-dimensional quasi-Sasakian manifolds and Ricci solitons, SUT J. Math., 48(1)(2012), 71–81.
  • De, U.C., Sarkar, A., On three-dimensional quasi-Sasakian manifolds, SUT J. Math., 45(1) 2009), 59–71.
  • De, U.C., Yildiz, A., Turan, M., Acet, B. E., 3-dimensional quasi-Sasakian manifolds with semi-symmetric non-metric connection, Hacettepe J. Math. Stat., 41(1)(2012), 127–137.
  • De, U.C., De, K., Khan, M.N.I., Almost co-K¨ahler manifolds and quasi-Einstein solitons, Chaos, Solitons and Fractals, 167(2023).
  • Fischer, A.E., An introduction to conformal Ricci flow class, Quantum Grav., 21(3)(2004), 171–218.
  • Gautam, U.K., Haseeb, A., Prasad R., Some results on projective curvature tensor in Sasakian manifolds, Commun. Korean Math. Soc., 34(3)(2019), 881–896.
  • Ghosh, S., η−Ricci solitons on quasi-Sasakian manifolds, An. Univ. Vest Timi¸s. Ser. Mat.-Inform., 56(1)(2018), 73–85.
  • Gonzalez, J.C., Chinea, D., Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc., 105(1)(1989), 173–184.
  • Haseeb, A., Prasad, R., η−Ricci solitons on ε−LP-Sasakian manifolds with a quartersymmetric metric connection, Honam Math. J., 41(3)(2019), 539–558.
  • Haseeb, A., Bilal, M., Chaubey, S.K., Khan, M.N.I., Geometry of indefinite Kenmotsu manifolds as ∗η-Ricci-Yamabe solitons, Axioms, 11(9)(2022), 461.
  • Kanemaki, S., Quasi-Sasakian manifolds, Tohoku Math. J., 29(2)(1977), 227–233.
  • Kanemaki, S., On Quasi-Sasakian manifolds in Differential Geometry, Banach Center Publ., Warsaw, 1979.
  • Majhi, P., De, U.C., Kar, D., η−Ricci solitons on Sasakian 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform., 55(2)(2017), 143–156.
  • Olszak, Z., Normal almost contact metric manifolds of dimension three, Ann. Polon. Math., 47(1)(1986), 41–50.
  • Olszak, Z., On three-dimensional conformally flat quasi-Sasakian manifolds, Period. Math. Hungar., 33(2)(1996), 105–113.
  • Pokhariyal, G.P., Mishra, R.S., Curvature tensor and their relativistic significance II, Yokohama Math. J., 19(2)(1971), 97–103.
  • Prakasha, D.G., Hadimani, B.S., η−Ricci solitons on para-Sasakian manifolds, J. Geom., 108(2)(2017), 383–392.
  • Sardar, A., Khan, M.N.I., De, U.C., h-*-Ricci solitons and almost co-K¨ahler manifolds, Mathematics, 9(24)(2021), 3200.
  • Turan, M., Yetim, C., Chaubey, S.K., On quasi-Sasakian 3-manifolds admitting η−Ricci solitons, Filomat, 33(15)(2019), 4923–4930.
  • Walker, A.G., On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc., 52(2)(1950), 36–64.
  • Yano, K., Kon, M., Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
Year 2023, , 375 - 381, 31.12.2023
https://doi.org/10.47000/tjmcs.1082849

Abstract

References

  • Basu, N., Bhattacharyya A., Conformal Ricci soliton in Kenmotsu manifold, Glob. J. of Adv. Research on Class. Modern Geom., 4(1)(2015), 15–21.
  • Blaga, M.A.,η−Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30(2)(2016), 489–496.
  • Blaga, M.A., Y¨uksel Perktas¸, S., Erdo˘gan, F.E., Acet, B.E., η−Ricci solitons in (ε)−almost paracontact metric manifolds, Glasnik Math., 53(1)(2018), 205–220.
  • Blair, D.E., The theory of quasi-Sasakian structures, J. Diff Geo., 1(1967), 331–345.
  • Calin, C., Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f−Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc., 33(3)(2010), 361–368.
  • Cho, J.T., Kimura M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61(2)(2009), 205–212.
  • De, U.C., Majhi P., φ−semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci., 21(2)(2015), 170–178.
  • De, U.C., Mondal, A.K., 3-dimensional quasi-Sasakian manifolds and Ricci solitons, SUT J. Math., 48(1)(2012), 71–81.
  • De, U.C., Sarkar, A., On three-dimensional quasi-Sasakian manifolds, SUT J. Math., 45(1) 2009), 59–71.
  • De, U.C., Yildiz, A., Turan, M., Acet, B. E., 3-dimensional quasi-Sasakian manifolds with semi-symmetric non-metric connection, Hacettepe J. Math. Stat., 41(1)(2012), 127–137.
  • De, U.C., De, K., Khan, M.N.I., Almost co-K¨ahler manifolds and quasi-Einstein solitons, Chaos, Solitons and Fractals, 167(2023).
  • Fischer, A.E., An introduction to conformal Ricci flow class, Quantum Grav., 21(3)(2004), 171–218.
  • Gautam, U.K., Haseeb, A., Prasad R., Some results on projective curvature tensor in Sasakian manifolds, Commun. Korean Math. Soc., 34(3)(2019), 881–896.
  • Ghosh, S., η−Ricci solitons on quasi-Sasakian manifolds, An. Univ. Vest Timi¸s. Ser. Mat.-Inform., 56(1)(2018), 73–85.
  • Gonzalez, J.C., Chinea, D., Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc., 105(1)(1989), 173–184.
  • Haseeb, A., Prasad, R., η−Ricci solitons on ε−LP-Sasakian manifolds with a quartersymmetric metric connection, Honam Math. J., 41(3)(2019), 539–558.
  • Haseeb, A., Bilal, M., Chaubey, S.K., Khan, M.N.I., Geometry of indefinite Kenmotsu manifolds as ∗η-Ricci-Yamabe solitons, Axioms, 11(9)(2022), 461.
  • Kanemaki, S., Quasi-Sasakian manifolds, Tohoku Math. J., 29(2)(1977), 227–233.
  • Kanemaki, S., On Quasi-Sasakian manifolds in Differential Geometry, Banach Center Publ., Warsaw, 1979.
  • Majhi, P., De, U.C., Kar, D., η−Ricci solitons on Sasakian 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform., 55(2)(2017), 143–156.
  • Olszak, Z., Normal almost contact metric manifolds of dimension three, Ann. Polon. Math., 47(1)(1986), 41–50.
  • Olszak, Z., On three-dimensional conformally flat quasi-Sasakian manifolds, Period. Math. Hungar., 33(2)(1996), 105–113.
  • Pokhariyal, G.P., Mishra, R.S., Curvature tensor and their relativistic significance II, Yokohama Math. J., 19(2)(1971), 97–103.
  • Prakasha, D.G., Hadimani, B.S., η−Ricci solitons on para-Sasakian manifolds, J. Geom., 108(2)(2017), 383–392.
  • Sardar, A., Khan, M.N.I., De, U.C., h-*-Ricci solitons and almost co-K¨ahler manifolds, Mathematics, 9(24)(2021), 3200.
  • Turan, M., Yetim, C., Chaubey, S.K., On quasi-Sasakian 3-manifolds admitting η−Ricci solitons, Filomat, 33(15)(2019), 4923–4930.
  • Walker, A.G., On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc., 52(2)(1950), 36–64.
  • Yano, K., Kon, M., Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Müslüm Aykut Akgün 0000-0002-8414-5228

Bilal Eftal Acet 0000-0002-0190-3741

Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Akgün, M. A., & Acet, B. E. (2023). Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton. Turkish Journal of Mathematics and Computer Science, 15(2), 375-381. https://doi.org/10.47000/tjmcs.1082849
AMA Akgün MA, Acet BE. Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton. TJMCS. December 2023;15(2):375-381. doi:10.47000/tjmcs.1082849
Chicago Akgün, Müslüm Aykut, and Bilal Eftal Acet. “Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton”. Turkish Journal of Mathematics and Computer Science 15, no. 2 (December 2023): 375-81. https://doi.org/10.47000/tjmcs.1082849.
EndNote Akgün MA, Acet BE (December 1, 2023) Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton. Turkish Journal of Mathematics and Computer Science 15 2 375–381.
IEEE M. A. Akgün and B. E. Acet, “Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton”, TJMCS, vol. 15, no. 2, pp. 375–381, 2023, doi: 10.47000/tjmcs.1082849.
ISNAD Akgün, Müslüm Aykut - Acet, Bilal Eftal. “Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton”. Turkish Journal of Mathematics and Computer Science 15/2 (December 2023), 375-381. https://doi.org/10.47000/tjmcs.1082849.
JAMA Akgün MA, Acet BE. Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton. TJMCS. 2023;15:375–381.
MLA Akgün, Müslüm Aykut and Bilal Eftal Acet. “Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 2, 2023, pp. 375-81, doi:10.47000/tjmcs.1082849.
Vancouver Akgün MA, Acet BE. Some Curvature Conditions on 3-Dimensional Quasi-Sasakian Manifolds Admitting Conformal Ricci Soliton. TJMCS. 2023;15(2):375-81.