Research Article
BibTex RIS Cite

A Note on the Composition of a Positive Integer whose Parts are Odd Integers

Year 2023, , 423 - 432, 31.12.2023
https://doi.org/10.47000/tjmcs.1166566

Abstract

In this study, we interested in the compostions of integers. Then, the combinations of an integer whose each part is odd were examined.
\begin{equation*}
O_{n}=\{(2a_{1}+1,...,2a_{t}+1):\text{ }2a_{1}+1+...+2a_{t}+1=n\text{ and \ }
a_{i}\text{ positive integer}\}.
\end{equation*}
and we call the set as an odd combination set $O_{n}$ set of an integer $n$. Then, an action on the set are defined. Then, the decomposition of the composition sets of a positive integer has been examined by using set theory. Then, we also focused on the combination of an integer n whose sum is less than a fixed integer m. We have obtained the composition set of an integer whose largest part is less than m. Using these sets, we obtained recurrence relations.

References

  • Al, B., Alkan, M., Some relations between partitions and Fibonacci numbers, Proc. Book of 2nd. Micopam, (2019).
  • Al, B., Alkan, M., On relations for the partitions of numbers, Filomat, 34(2)(2020), 567–574.
  • Al, B., Alkan, M., Note on non-commutative partition, Proc. Book of 3nd&4th. Micopam, (2020-2021).
  • Al, B., Alkan, M., Odd compositions and odd partititons on positive integers, Proc. Book of 5th. Micopam, (2022).
  • Al, B., Alkan, M., Bir tam sayının parça sayısıyla kısıtlanmış kompozisyonları, Proc. Book of ICEANS, (2022).
  • Al, B.,Alkan, M., Compositions of an integers and Fibonacci numbers, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, (2023) (accepted).
  • Andrews, G.E., The Theory of Partitions, Addison-Wesley Publishing, New York, 1976.
  • Andrews, G.E., Erikson, K., Integer Partitions, Cambridge University Press, Cambridge, 2004.
  • Andrews, G.E., Hirschhorn, M.D., Sellers, J. A., Arithmetic properties of partitions with even parts distinct, Ramanujan Journal,23(1–3)(2010), 169–181.
  • Apostol, T.M., On the Lerch Zeta function, Pacific J. Math., 1(1951), 161–167.
  • Apostol, T.M., Introduction To Analytic Number Theory, Springer-Verlag, NewYork, 1976.
  • Chen, S.C., On the number of partitions with distinct even parts, Discrete Math., 311(2011), 940–943.
  • Euler, L., Introduction to Analysis of the Infinite, vol. 1, Springer-Verlag, 1988 (translation by J.D. Blanton).
  • Ewell, J.A., Recurrences for the partition function and its relatives, Rocky Mountain Journal Of Mathematics, 34(2)(2004).
  • Ewell, J.A., Recurrences for two restricted partition functions, Fibonacci Quart., 18(1980), 1–2.
  • Gupta, H., Partitions - A Survey, Journal of Research of the Notional Bureau of Standards - B. Mathematical Sciences, 74B(1)(1970).
  • Hardy, G.H., Wright, E.M., An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960.
  • Horadam, A.F., Jacobsthal representation numbers, Fibonacci Quarterly, 34(1)(1996), 40–54.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Canada: Wiley-Interscience Publication, 2001.
  • MacMahon, P.A., Note on the parity of the number which enumerates the partitions of a number, Proc. Cambridge Philos. Soc., 20(1921), 281–283.
  • Mana, P., Problem B-152, The Fibonacci Quarterly, 7(3)(1969), 336.
  • Merca, M., Fast computation of the partition function, Journal of Number Theory, 164(2016,) 405–416.
  • Merca, M., New relations for the number of partitions with distinct even parts, Journal of Number Theory, 176(2017), 1–12.
  • Merca, M., On the number of partitions into parts of k different magnitudes, Discrete Mathematics, 340(2017,) 644–648.
  • Merca, M., A note on the partitions involving parts of k different magnitudes, Journal of Number Theory, 162(2016), 23–34.
Year 2023, , 423 - 432, 31.12.2023
https://doi.org/10.47000/tjmcs.1166566

Abstract

References

  • Al, B., Alkan, M., Some relations between partitions and Fibonacci numbers, Proc. Book of 2nd. Micopam, (2019).
  • Al, B., Alkan, M., On relations for the partitions of numbers, Filomat, 34(2)(2020), 567–574.
  • Al, B., Alkan, M., Note on non-commutative partition, Proc. Book of 3nd&4th. Micopam, (2020-2021).
  • Al, B., Alkan, M., Odd compositions and odd partititons on positive integers, Proc. Book of 5th. Micopam, (2022).
  • Al, B., Alkan, M., Bir tam sayının parça sayısıyla kısıtlanmış kompozisyonları, Proc. Book of ICEANS, (2022).
  • Al, B.,Alkan, M., Compositions of an integers and Fibonacci numbers, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, (2023) (accepted).
  • Andrews, G.E., The Theory of Partitions, Addison-Wesley Publishing, New York, 1976.
  • Andrews, G.E., Erikson, K., Integer Partitions, Cambridge University Press, Cambridge, 2004.
  • Andrews, G.E., Hirschhorn, M.D., Sellers, J. A., Arithmetic properties of partitions with even parts distinct, Ramanujan Journal,23(1–3)(2010), 169–181.
  • Apostol, T.M., On the Lerch Zeta function, Pacific J. Math., 1(1951), 161–167.
  • Apostol, T.M., Introduction To Analytic Number Theory, Springer-Verlag, NewYork, 1976.
  • Chen, S.C., On the number of partitions with distinct even parts, Discrete Math., 311(2011), 940–943.
  • Euler, L., Introduction to Analysis of the Infinite, vol. 1, Springer-Verlag, 1988 (translation by J.D. Blanton).
  • Ewell, J.A., Recurrences for the partition function and its relatives, Rocky Mountain Journal Of Mathematics, 34(2)(2004).
  • Ewell, J.A., Recurrences for two restricted partition functions, Fibonacci Quart., 18(1980), 1–2.
  • Gupta, H., Partitions - A Survey, Journal of Research of the Notional Bureau of Standards - B. Mathematical Sciences, 74B(1)(1970).
  • Hardy, G.H., Wright, E.M., An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960.
  • Horadam, A.F., Jacobsthal representation numbers, Fibonacci Quarterly, 34(1)(1996), 40–54.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Canada: Wiley-Interscience Publication, 2001.
  • MacMahon, P.A., Note on the parity of the number which enumerates the partitions of a number, Proc. Cambridge Philos. Soc., 20(1921), 281–283.
  • Mana, P., Problem B-152, The Fibonacci Quarterly, 7(3)(1969), 336.
  • Merca, M., Fast computation of the partition function, Journal of Number Theory, 164(2016,) 405–416.
  • Merca, M., New relations for the number of partitions with distinct even parts, Journal of Number Theory, 176(2017), 1–12.
  • Merca, M., On the number of partitions into parts of k different magnitudes, Discrete Mathematics, 340(2017,) 644–648.
  • Merca, M., A note on the partitions involving parts of k different magnitudes, Journal of Number Theory, 162(2016), 23–34.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Busra Al 0000-0002-1637-5355

Mustafa Alkan 0000-0002-4452-4442

Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Al, B., & Alkan, M. (2023). A Note on the Composition of a Positive Integer whose Parts are Odd Integers. Turkish Journal of Mathematics and Computer Science, 15(2), 423-432. https://doi.org/10.47000/tjmcs.1166566
AMA Al B, Alkan M. A Note on the Composition of a Positive Integer whose Parts are Odd Integers. TJMCS. December 2023;15(2):423-432. doi:10.47000/tjmcs.1166566
Chicago Al, Busra, and Mustafa Alkan. “A Note on the Composition of a Positive Integer Whose Parts Are Odd Integers”. Turkish Journal of Mathematics and Computer Science 15, no. 2 (December 2023): 423-32. https://doi.org/10.47000/tjmcs.1166566.
EndNote Al B, Alkan M (December 1, 2023) A Note on the Composition of a Positive Integer whose Parts are Odd Integers. Turkish Journal of Mathematics and Computer Science 15 2 423–432.
IEEE B. Al and M. Alkan, “A Note on the Composition of a Positive Integer whose Parts are Odd Integers”, TJMCS, vol. 15, no. 2, pp. 423–432, 2023, doi: 10.47000/tjmcs.1166566.
ISNAD Al, Busra - Alkan, Mustafa. “A Note on the Composition of a Positive Integer Whose Parts Are Odd Integers”. Turkish Journal of Mathematics and Computer Science 15/2 (December 2023), 423-432. https://doi.org/10.47000/tjmcs.1166566.
JAMA Al B, Alkan M. A Note on the Composition of a Positive Integer whose Parts are Odd Integers. TJMCS. 2023;15:423–432.
MLA Al, Busra and Mustafa Alkan. “A Note on the Composition of a Positive Integer Whose Parts Are Odd Integers”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 2, 2023, pp. 423-32, doi:10.47000/tjmcs.1166566.
Vancouver Al B, Alkan M. A Note on the Composition of a Positive Integer whose Parts are Odd Integers. TJMCS. 2023;15(2):423-32.