Research Article
BibTex RIS Cite

On Higher Order Jacobsthal Hyper Complex Numbers

Year 2024, , 35 - 44, 30.06.2024
https://doi.org/10.47000/tjmcs.1195463

Abstract

In this work, we define a new class of hyper complex numbers whose components are higher order Jacobsthal numbers, and call such numbers as the higher order Jacobsthal $ 2^{s} $-ions. We obtain some algebraic properties of the higher order Jacobsthal $ 2^{s} $-ions such as recurrence relation, Binet-like formula, generating function, exponential generating function, Vajda's identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity. Morever we derive the matrix representation of the higher order Jacobsthal $ 2^{s} $-ions, and so prove Cassini's identity as a further type.

References

  • Baez, J.C., The octonions, Bulletin of the American Mathematical Society, 39(2)(2002), 145–205.
  • Cariow, A., Cariowa, G., Algorithm for multiplying two octonions, Radioelectronics and Communications Systems, 55(10)(2012), 464–473.
  • Cariow, A., Cariowa, G., An algorithm for fast multiplication of sedenions, Information Proccessing Letters, 113(9)(2013), 324–331.
  • Carmody, K., Circular and hyperbolic quaternions, octonions and sedenions, Applied Mathematics and Computation, 28(1)(1988), 47–72.
  • Cawagas, R., On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discussiones Mathematicae-General Algebra and Applications, 24(2)(2004), 251–265.
  • Çimen, C.B., İpek, A., On Jacobsthal and Jacobsthal–Lucas octonions, Mediterranean Journal of Mathematics, 14(2)(2017), 1–13.
  • Çimen, C.B., İpek, A. On Jacobsthal and the Jacobsthal-Lucas sedenions and several identities involving these numbers,Mathematica Aeterna, 7(4)(2017), 447–454.
  • Göcen, M., Soykan, Y., Horadam 2k-ions, Konuralp Journal of Mathematics, 7(2)(2019), 492–501.
  • Hamilton, W.R., Elements of quaternions, Green & Company, London: Longman, 1866.
  • Horadam, A.F., Jacobsthal representation numbers, The Fibonacci Quarterly, 34(1)(1996), 40–54.
  • Imaeda, K., Imaeda, M., Sedenions: algebra and analysis, Applied Mathematics and Computation, 115(2000), 77–88.
  • Mironov, V.L., Mironov, S.V., Associative space-time sedenions and their application in relativistic quantum mechanics and field theory, Applied Mathematics, 6(1)(2015), 46–56.
  • Özimamoğlu, H., On hyper complex numbers with higher order Pell numbers components, The Journal of Analysis, 31(4)(2023), 2443–2457
  • Özkan, E., Uysal, M., On quaternions with higher order Jacobsthal numbers components, Gazi University Journal of Science, 36(1)(2022), 336–347.
  • Özvatan, M., Generalized Golden-Fibonacci calculus and applications, Master of Science Thesis,İzmir Institute of Technology, 2018.
  • Szynal-Liana, A., Wloch, I., A note on Jacobsthal quaternions, Advances in Applied Clifford Algebras, 26(1)(2016), 441–447.
  • Torunbalcı-Aydın, F., Yüce, S., A new approach to Jacobsthal quaternions, Advances in Applied Clifford Algebras, Filomat, 31(18)(2017), 5567–5579.
  • Uysal, M., Özkan, E., Higher order Jacobsthal–Lucas quaternions, Axioms, 11(12)(2022), 671.
Year 2024, , 35 - 44, 30.06.2024
https://doi.org/10.47000/tjmcs.1195463

Abstract

References

  • Baez, J.C., The octonions, Bulletin of the American Mathematical Society, 39(2)(2002), 145–205.
  • Cariow, A., Cariowa, G., Algorithm for multiplying two octonions, Radioelectronics and Communications Systems, 55(10)(2012), 464–473.
  • Cariow, A., Cariowa, G., An algorithm for fast multiplication of sedenions, Information Proccessing Letters, 113(9)(2013), 324–331.
  • Carmody, K., Circular and hyperbolic quaternions, octonions and sedenions, Applied Mathematics and Computation, 28(1)(1988), 47–72.
  • Cawagas, R., On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discussiones Mathematicae-General Algebra and Applications, 24(2)(2004), 251–265.
  • Çimen, C.B., İpek, A., On Jacobsthal and Jacobsthal–Lucas octonions, Mediterranean Journal of Mathematics, 14(2)(2017), 1–13.
  • Çimen, C.B., İpek, A. On Jacobsthal and the Jacobsthal-Lucas sedenions and several identities involving these numbers,Mathematica Aeterna, 7(4)(2017), 447–454.
  • Göcen, M., Soykan, Y., Horadam 2k-ions, Konuralp Journal of Mathematics, 7(2)(2019), 492–501.
  • Hamilton, W.R., Elements of quaternions, Green & Company, London: Longman, 1866.
  • Horadam, A.F., Jacobsthal representation numbers, The Fibonacci Quarterly, 34(1)(1996), 40–54.
  • Imaeda, K., Imaeda, M., Sedenions: algebra and analysis, Applied Mathematics and Computation, 115(2000), 77–88.
  • Mironov, V.L., Mironov, S.V., Associative space-time sedenions and their application in relativistic quantum mechanics and field theory, Applied Mathematics, 6(1)(2015), 46–56.
  • Özimamoğlu, H., On hyper complex numbers with higher order Pell numbers components, The Journal of Analysis, 31(4)(2023), 2443–2457
  • Özkan, E., Uysal, M., On quaternions with higher order Jacobsthal numbers components, Gazi University Journal of Science, 36(1)(2022), 336–347.
  • Özvatan, M., Generalized Golden-Fibonacci calculus and applications, Master of Science Thesis,İzmir Institute of Technology, 2018.
  • Szynal-Liana, A., Wloch, I., A note on Jacobsthal quaternions, Advances in Applied Clifford Algebras, 26(1)(2016), 441–447.
  • Torunbalcı-Aydın, F., Yüce, S., A new approach to Jacobsthal quaternions, Advances in Applied Clifford Algebras, Filomat, 31(18)(2017), 5567–5579.
  • Uysal, M., Özkan, E., Higher order Jacobsthal–Lucas quaternions, Axioms, 11(12)(2022), 671.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hayrullah Özimamoğlu 0000-0001-7844-1840

Publication Date June 30, 2024
Published in Issue Year 2024

Cite

APA Özimamoğlu, H. (2024). On Higher Order Jacobsthal Hyper Complex Numbers. Turkish Journal of Mathematics and Computer Science, 16(1), 35-44. https://doi.org/10.47000/tjmcs.1195463
AMA Özimamoğlu H. On Higher Order Jacobsthal Hyper Complex Numbers. TJMCS. June 2024;16(1):35-44. doi:10.47000/tjmcs.1195463
Chicago Özimamoğlu, Hayrullah. “On Higher Order Jacobsthal Hyper Complex Numbers”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 35-44. https://doi.org/10.47000/tjmcs.1195463.
EndNote Özimamoğlu H (June 1, 2024) On Higher Order Jacobsthal Hyper Complex Numbers. Turkish Journal of Mathematics and Computer Science 16 1 35–44.
IEEE H. Özimamoğlu, “On Higher Order Jacobsthal Hyper Complex Numbers”, TJMCS, vol. 16, no. 1, pp. 35–44, 2024, doi: 10.47000/tjmcs.1195463.
ISNAD Özimamoğlu, Hayrullah. “On Higher Order Jacobsthal Hyper Complex Numbers”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 35-44. https://doi.org/10.47000/tjmcs.1195463.
JAMA Özimamoğlu H. On Higher Order Jacobsthal Hyper Complex Numbers. TJMCS. 2024;16:35–44.
MLA Özimamoğlu, Hayrullah. “On Higher Order Jacobsthal Hyper Complex Numbers”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 35-44, doi:10.47000/tjmcs.1195463.
Vancouver Özimamoğlu H. On Higher Order Jacobsthal Hyper Complex Numbers. TJMCS. 2024;16(1):35-44.