Research Article
BibTex RIS Cite

On the Continuous Composition of Integrable Functions

Year 2024, , 354 - 357, 31.12.2024
https://doi.org/10.47000/tjmcs.1319453

Abstract

We prove if $\alpha$ be a function of bounded variation on $[a,b]$, $[m_{i}, M_{i}] \subset \mathbb{R}$ be a closed interval for $1\leq i \leq n$, $f_{i}:[a,b]\to [m_{i}, M_{i}]$ be Riemann-Stieltjes integrable with respect to $\alpha$, and $G: \Pi_{i=1}^{i=n} [m_{i},M_{i}] \to \mathbb{R}$ be continuous, then $H=G\circ(f_{1}, \dots ,f_{n})$ is Riemann-Stieltjes integrable with respect to $\alpha$. Some other consequences, applications and counterexamples are also provided.

Supporting Institution

This article is not supported by any institution.

Project Number

This article is not a result of any project in any way.

References

  • Apostol, T.M., Mathematical Analysis, 2nd edition, Addison-Wesley, Massachusetts, USA, 1975.
  • Barnett, N.S., Dragomir, S.S., The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral, Applied Mathematics Letters, 22(2009), 58–63.
  • Bartle, R.G., The Elements of Real Analysis, 2nd ed., John-Wiely & sons, Inc., New York, 1991.
  • Bashirov, A., Mathematical Analysis Fundamentals, 1st ed., Elsevier, London, 2014.
  • Cerone, P., Dragomir, S.S., Bounding the Cˇebysˇev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications, Computers and Mathematics with Applications, 58(2009), 1247–1252.
  • Chen, Z., Leskel¨a, L., Viitasaari, l., Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes, Stochastic Process and their Applications, 129(2019), 2723–2725.
  • Dragomir, S.S., Harley, C., Momoniat, E., Error bounds in approximating the Riemann-Stieltjes integral of Cn+1-class integrands and nonsmooth integrators, Applied Mathematics and Computation, 249(2014), 237–246.
  • Leffler, K., The Riemann-Stieltjes Integral and Some Applications in Complex Analysis and Probability Theory, PhD, Ume˙a University, Ume˙a, Sweden, 2014.
  • Parsian, A., On the Riemann-Stieltjes integral, Mathematics Interdisciplinary Research, 7(2022), 131–138.
  • Rezounenko, A.V., Nonlocal PDEs with a state-dependent delay term presented by Stieltjes integral, Comptes Rendus Mathematique, 349(3-4)(2011), 179–183.
  • Ross, K .A., Another approach to Riemann-Stieltjes integrals, The American Mathematical Monthly, 87(1980), 660–662.
  • Rudin, W., Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill Book Company, Inc., New York, 1976.
  • Ter Horst, H.J., On Stieltjes integration in Euclidean space, Journal of Mathematical Analysis and Applications, 114(1986), 57–74.
  • Ter Horst, H.J., Riemann-Stieltjes and Lebesgue-Stieltjes integrability, The American Mathematical Monthly, 91(1984), 551–559.
  • Yaskov, P., On pathwise Riemann-Stieltjes integrals, Statistics & Probability Letters, 150(2019), 101–107.
Year 2024, , 354 - 357, 31.12.2024
https://doi.org/10.47000/tjmcs.1319453

Abstract

Project Number

This article is not a result of any project in any way.

References

  • Apostol, T.M., Mathematical Analysis, 2nd edition, Addison-Wesley, Massachusetts, USA, 1975.
  • Barnett, N.S., Dragomir, S.S., The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral, Applied Mathematics Letters, 22(2009), 58–63.
  • Bartle, R.G., The Elements of Real Analysis, 2nd ed., John-Wiely & sons, Inc., New York, 1991.
  • Bashirov, A., Mathematical Analysis Fundamentals, 1st ed., Elsevier, London, 2014.
  • Cerone, P., Dragomir, S.S., Bounding the Cˇebysˇev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications, Computers and Mathematics with Applications, 58(2009), 1247–1252.
  • Chen, Z., Leskel¨a, L., Viitasaari, l., Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes, Stochastic Process and their Applications, 129(2019), 2723–2725.
  • Dragomir, S.S., Harley, C., Momoniat, E., Error bounds in approximating the Riemann-Stieltjes integral of Cn+1-class integrands and nonsmooth integrators, Applied Mathematics and Computation, 249(2014), 237–246.
  • Leffler, K., The Riemann-Stieltjes Integral and Some Applications in Complex Analysis and Probability Theory, PhD, Ume˙a University, Ume˙a, Sweden, 2014.
  • Parsian, A., On the Riemann-Stieltjes integral, Mathematics Interdisciplinary Research, 7(2022), 131–138.
  • Rezounenko, A.V., Nonlocal PDEs with a state-dependent delay term presented by Stieltjes integral, Comptes Rendus Mathematique, 349(3-4)(2011), 179–183.
  • Ross, K .A., Another approach to Riemann-Stieltjes integrals, The American Mathematical Monthly, 87(1980), 660–662.
  • Rudin, W., Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill Book Company, Inc., New York, 1976.
  • Ter Horst, H.J., On Stieltjes integration in Euclidean space, Journal of Mathematical Analysis and Applications, 114(1986), 57–74.
  • Ter Horst, H.J., Riemann-Stieltjes and Lebesgue-Stieltjes integrability, The American Mathematical Monthly, 91(1984), 551–559.
  • Yaskov, P., On pathwise Riemann-Stieltjes integrals, Statistics & Probability Letters, 150(2019), 101–107.
There are 15 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Ali Parsian 0000-0001-6323-5956

Project Number This article is not a result of any project in any way.
Publication Date December 31, 2024
Published in Issue Year 2024

Cite

APA Parsian, A. (2024). On the Continuous Composition of Integrable Functions. Turkish Journal of Mathematics and Computer Science, 16(2), 354-357. https://doi.org/10.47000/tjmcs.1319453
AMA Parsian A. On the Continuous Composition of Integrable Functions. TJMCS. December 2024;16(2):354-357. doi:10.47000/tjmcs.1319453
Chicago Parsian, Ali. “On the Continuous Composition of Integrable Functions”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 354-57. https://doi.org/10.47000/tjmcs.1319453.
EndNote Parsian A (December 1, 2024) On the Continuous Composition of Integrable Functions. Turkish Journal of Mathematics and Computer Science 16 2 354–357.
IEEE A. Parsian, “On the Continuous Composition of Integrable Functions”, TJMCS, vol. 16, no. 2, pp. 354–357, 2024, doi: 10.47000/tjmcs.1319453.
ISNAD Parsian, Ali. “On the Continuous Composition of Integrable Functions”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 354-357. https://doi.org/10.47000/tjmcs.1319453.
JAMA Parsian A. On the Continuous Composition of Integrable Functions. TJMCS. 2024;16:354–357.
MLA Parsian, Ali. “On the Continuous Composition of Integrable Functions”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 354-7, doi:10.47000/tjmcs.1319453.
Vancouver Parsian A. On the Continuous Composition of Integrable Functions. TJMCS. 2024;16(2):354-7.