Research Article
BibTex RIS Cite

Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order

Year 2024, , 162 - 168, 30.06.2024
https://doi.org/10.47000/tjmcs.1338657

Abstract

In this study, we introduce two new subclasses of close-to-convex functions of complex order, which
are introduced here by means of a certain non-homogenous Cauchy-Euler-type differential equation of order m, and determine the coefficient bounds for functions belonging to these new classes.

References

  • Altıntaş, O., Irmak, H., Owa, S., Srivastava, H.M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20(2007), 1218–1222.
  • Altıntaş, O., Özkan, Ö ., Srivastava, H.M., Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46(3)(2001), 207–218.
  • Bulut, S., Coefficient bounds for certain subclasses of analytic functions of complex order, Hacet. J. Math. Stat., 45(4)(2016), 1015–1022.
  • Bulut, S., Coefficient bounds for certain subclasses of close-to-convex functions of complex order, Filomat, 31(20)(2017), 6401–6408.
  • Faisal, I., Darus, M., Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions, Hacet. J. Math. Stat., 43(3)(2014), 375–382.
  • Murugusundaramoorthy, G., Srivastava, H.M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2)(2004), 1–8.
  • Nasr, M.A., Aouf, M.K., Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A, 12(1)(1983), 153–159.
  • Orhan, H., R˘aducanu, D., C¸ a˘glar, M., Bayram, M., Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Appl. Anal., (2013).
  • Robertson, M.S., On the theory of univalent functions, Ann. Math. (2), 37(2)(1936), 374–408.
  • Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2), 48(1943), 48–82.
  • Srivastava, H.M., Altıntas¸, O., Kırcı Serenbay, S., Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24(2011), 1359–1363.
  • Srivastava, H.M., Xu, Q.-H.,Wu, G.-P., Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett., 23(2010), 763–768.
  • Ul-Haq, W., Nazneen, A., Rehman, N., Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat, 28(6)(2014), 1139–1142.
  • Ul-Haq, W., Nazneen, A., Arif, M.,Rehman, N., Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comput. Anal. Appl., 16(1)(2014), 133–138.
  • Xu, Q.-X., Cai, Q.-M., Srivastava, H.M., Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput., 225(2013), 43–49.
  • Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15(5)(2011), 2377–2386.
Year 2024, , 162 - 168, 30.06.2024
https://doi.org/10.47000/tjmcs.1338657

Abstract

References

  • Altıntaş, O., Irmak, H., Owa, S., Srivastava, H.M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20(2007), 1218–1222.
  • Altıntaş, O., Özkan, Ö ., Srivastava, H.M., Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46(3)(2001), 207–218.
  • Bulut, S., Coefficient bounds for certain subclasses of analytic functions of complex order, Hacet. J. Math. Stat., 45(4)(2016), 1015–1022.
  • Bulut, S., Coefficient bounds for certain subclasses of close-to-convex functions of complex order, Filomat, 31(20)(2017), 6401–6408.
  • Faisal, I., Darus, M., Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions, Hacet. J. Math. Stat., 43(3)(2014), 375–382.
  • Murugusundaramoorthy, G., Srivastava, H.M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2)(2004), 1–8.
  • Nasr, M.A., Aouf, M.K., Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A, 12(1)(1983), 153–159.
  • Orhan, H., R˘aducanu, D., C¸ a˘glar, M., Bayram, M., Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Appl. Anal., (2013).
  • Robertson, M.S., On the theory of univalent functions, Ann. Math. (2), 37(2)(1936), 374–408.
  • Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2), 48(1943), 48–82.
  • Srivastava, H.M., Altıntas¸, O., Kırcı Serenbay, S., Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24(2011), 1359–1363.
  • Srivastava, H.M., Xu, Q.-H.,Wu, G.-P., Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett., 23(2010), 763–768.
  • Ul-Haq, W., Nazneen, A., Rehman, N., Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat, 28(6)(2014), 1139–1142.
  • Ul-Haq, W., Nazneen, A., Arif, M.,Rehman, N., Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comput. Anal. Appl., 16(1)(2014), 133–138.
  • Xu, Q.-X., Cai, Q.-M., Srivastava, H.M., Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput., 225(2013), 43–49.
  • Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15(5)(2011), 2377–2386.
There are 16 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Serap Bulut 0000-0002-6506-4588

Publication Date June 30, 2024
Published in Issue Year 2024

Cite

APA Bulut, S. (2024). Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order. Turkish Journal of Mathematics and Computer Science, 16(1), 162-168. https://doi.org/10.47000/tjmcs.1338657
AMA Bulut S. Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order. TJMCS. June 2024;16(1):162-168. doi:10.47000/tjmcs.1338657
Chicago Bulut, Serap. “Coefficient Bounds for the General Subclasses of Close-to-Convex Functions of Complex Order”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 162-68. https://doi.org/10.47000/tjmcs.1338657.
EndNote Bulut S (June 1, 2024) Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order. Turkish Journal of Mathematics and Computer Science 16 1 162–168.
IEEE S. Bulut, “Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order”, TJMCS, vol. 16, no. 1, pp. 162–168, 2024, doi: 10.47000/tjmcs.1338657.
ISNAD Bulut, Serap. “Coefficient Bounds for the General Subclasses of Close-to-Convex Functions of Complex Order”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 162-168. https://doi.org/10.47000/tjmcs.1338657.
JAMA Bulut S. Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order. TJMCS. 2024;16:162–168.
MLA Bulut, Serap. “Coefficient Bounds for the General Subclasses of Close-to-Convex Functions of Complex Order”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 162-8, doi:10.47000/tjmcs.1338657.
Vancouver Bulut S. Coefficient bounds for the General Subclasses of Close-to-Convex Functions of Complex Order. TJMCS. 2024;16(1):162-8.