In this paper, we investigate the following general difference equations
\begin{equation*}
x_{n+1}=h^{-1}\left( h\left( x_{n}\right) \frac{Ah\left( x_{n-1}\right)+Bh\left( x_{n-2}\right) }{Ch\left( x_{n-1}\right)+Dh\left( x_{n-2}\right)}\right) ,\ n\in \mathbb{N}_{0},
\end{equation*}
where the parameters $A, B, C, D$ and the initial values $x_{-\Phi}$, for $\Phi=\overline{0,2}$ are real numbers, $h$ is a continuous and strictly monotone function, $h\left( \mathbb{R}\right) =\mathbb{R}$, $h\left( 0\right) =0$. In addition, we obtain closed-form solutions of aforementioned difference equations. Finally, numerical applications are given.
List of Reviewers: 1. Prof. Dr. Yasin Yazlik Turkey, Nevsehir Haci Bektas Veli University, E-mail: yyazlik@nevsehir.edu.tr 2. Prof. Dr. Raafat Abo-Zeid Egypt, The Higher Institute for Engineering &Technology Al-Obour, E-mail: abuzead73@yahoo.com 3. Prof. Dr. Necati Taskara Turkey, Selcuk University, E-mail: ntaskara@selcuk.edu.tr 4. Prof. Dr. Tarek Fawzi Ibrahim Egypt, Mansoura University, E mail: tfibrahem@mans.edu.eg 5. Prof. Dr. Nouressadat Touafek Algeria, Mohamed Seddik Ben Yahia University, Email: ntouafek@gmail.com
Primary Language | English |
---|---|
Subjects | Applied Mathematics (Other) |
Journal Section | Articles |
Authors | |
Publication Date | June 30, 2024 |
Published in Issue | Year 2024 |