Research Article
BibTex RIS Cite

Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane

Year 2024, , 1 - 5, 30.06.2024
https://doi.org/10.47000/tjmcs.1403706

Abstract

We introduce four ordinary differential equations for a fixed natural parametrization of a spacelike curve $C$ in the Lorentz plane. The relationships between these differential equations is studied through the curvature of $C$.

References

  • Abe, N., Nakanishi, Y., Yamaguchi, S., Circles and spheres in pseudo-Riemannian geometry, Aequationes Math., 39(2-3)(1990), 134–145.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers, Open Math. 16(2018), 747–766.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane with curvature depending on their position, Open Math., 18(2020), 749–770.
  • Crasmareanu, M., The flow-curvature of spacelike parametrized curves in the Lorentz plane, Proc. Int. Geom. Cent., 15(2)(2022), 101–109.
  • Crasmareanu, M., The adjoint map of Euclidean plane curves and curvature problems, Tamkang J. Math., 55(2024), (in press).
  • Saloom, A., Tari, F., Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedicata, 159(2012), 109–124.
  • Olver Peter J., Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
  • Woolgar, E., Xie, R., Self-similar curve shortening flow in hyperbolic 2-space, Proc. Am. Math. Soc., 150(3)(2022), 1301–1319.
Year 2024, , 1 - 5, 30.06.2024
https://doi.org/10.47000/tjmcs.1403706

Abstract

References

  • Abe, N., Nakanishi, Y., Yamaguchi, S., Circles and spheres in pseudo-Riemannian geometry, Aequationes Math., 39(2-3)(1990), 134–145.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers, Open Math. 16(2018), 747–766.
  • Castro, I., Castro-Infantes, I., Castro-Infantes, J., Curves in the Lorentz-Minkowski plane with curvature depending on their position, Open Math., 18(2020), 749–770.
  • Crasmareanu, M., The flow-curvature of spacelike parametrized curves in the Lorentz plane, Proc. Int. Geom. Cent., 15(2)(2022), 101–109.
  • Crasmareanu, M., The adjoint map of Euclidean plane curves and curvature problems, Tamkang J. Math., 55(2024), (in press).
  • Saloom, A., Tari, F., Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedicata, 159(2012), 109–124.
  • Olver Peter J., Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
  • Woolgar, E., Xie, R., Self-similar curve shortening flow in hyperbolic 2-space, Proc. Am. Math. Soc., 150(3)(2022), 1301–1319.
There are 8 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Articles
Authors

Mircea Crasmareanu 0000-0002-5230-2751

Publication Date June 30, 2024
Submission Date December 12, 2023
Acceptance Date May 14, 2024
Published in Issue Year 2024

Cite

APA Crasmareanu, M. (2024). Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. Turkish Journal of Mathematics and Computer Science, 16(1), 1-5. https://doi.org/10.47000/tjmcs.1403706
AMA Crasmareanu M. Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. TJMCS. June 2024;16(1):1-5. doi:10.47000/tjmcs.1403706
Chicago Crasmareanu, Mircea. “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 1-5. https://doi.org/10.47000/tjmcs.1403706.
EndNote Crasmareanu M (June 1, 2024) Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. Turkish Journal of Mathematics and Computer Science 16 1 1–5.
IEEE M. Crasmareanu, “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”, TJMCS, vol. 16, no. 1, pp. 1–5, 2024, doi: 10.47000/tjmcs.1403706.
ISNAD Crasmareanu, Mircea. “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 1-5. https://doi.org/10.47000/tjmcs.1403706.
JAMA Crasmareanu M. Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. TJMCS. 2024;16:1–5.
MLA Crasmareanu, Mircea. “Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 1-5, doi:10.47000/tjmcs.1403706.
Vancouver Crasmareanu M. Differential Equations of Spacelike Parametrized Curves in the Lorentz Plane. TJMCS. 2024;16(1):1-5.