Research Article
BibTex RIS Cite

Year 2024, Volume: 16 Issue: 2, 471 - 480, 31.12.2024
https://doi.org/10.47000/tjmcs.1507142

Abstract

References

  • Ahuja, O.P., C¸ etinkaya, A., Use of Qquantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conference Proceedings, 2095(2019), 020001-14.
  • Ahuja, O.P., C¸ etinkaya, A., Connecting quantum calculus and harmonic starlike functions, Filomat, 34(5)(2020), 1431–1441.
  • Ahuja, O.P., C¸ etinkaya, A., Polatoglu, Y., Harmonic univalent convex functions using a quantum calculus approach, Acta Universitatis Apulensis, 58(2019), 67–81.
  • Çakmak, S., Yaşar, E., Yalçın, S., New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacettepe Journal of Mathematics and Statistics, 51(1)(2022), 172–186.
  • Çakmak, S., Regarding a novel subclass of harmonic multivalent functions defined by higher-order differential inequality, Iranian Journal of Science, 48(2024), 1541–1550.
  • Cakmak, S., Yasar, E., Yalc¸ın Tokgöz, S., Some basic properties of a subclass of close-to-convex harmonic mappings, Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics, 15(2)(2024), 163–173.
  • Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I., 9(1984), 3–25.
  • Feje´r, L., Über die Positivita¨t von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten, Acta Litt. Ac Sei. Szeged, (1925), 75–86.
  • Goodman, A.W., Univalent Functions, vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
  • Jackson, F.H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(2)(1909), 253–281.
  • Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M., Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15(1)(2002), 63–69.
  • Ponnusamy, S., Yamamoto, H., Yanagihara, H., Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ., 58(1)(2013), 23–34.
  • Li, L., Ponnusamy, S., Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. Appl., 408(2013), 589–596.
  • Li, L., Ponnusamy, S., Injectivity of sections of univalent harmonic mappings, Nonlinear Anal., 89(2013), 276–283.
  • Salagean, G.S., Subclass of univalent functions, in Complex Analysis-Fifth Romanian Finish Seminar, (1983), 362–372.
  • Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145–152.
  • Yalçın, S., Bayram, H., On harmonic univalent functions involving q-poisson distribution series, MJPS, 8(2)(2021).

On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$

Year 2024, Volume: 16 Issue: 2, 471 - 480, 31.12.2024
https://doi.org/10.47000/tjmcs.1507142

Abstract

In this paper, a novel subclass, denoted as $\mathcal{PH}(q, \alpha)$, is unveiled within the domain of harmonic functions in the open unit disk $\mathbb{E}$. This subclass, comprised of functions $\mathfrak{f}=\mathfrak{u}+\overline{\mathfrak{v}}\in \mathcal{SH}^{0}$, is characterized by a specific inequality involving the $q$-derivative operator. Through meticulous analysis, it is demonstrated that functions belonging to $\mathcal{PH}(q, \alpha)$ exhibit remarkable close-to-convexity properties. Furthermore, diverse results such as distortion theorem, coefficient bounds, and a sufficient coefficient condition are yielded by the exploration. Additionally, the closure properties of $\mathcal{PH}(q, \alpha)$ under convolution operations and convex combination are elucidated, underscoring its structural coherence and relevance in the broader context of harmonic mappings.

References

  • Ahuja, O.P., C¸ etinkaya, A., Use of Qquantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conference Proceedings, 2095(2019), 020001-14.
  • Ahuja, O.P., C¸ etinkaya, A., Connecting quantum calculus and harmonic starlike functions, Filomat, 34(5)(2020), 1431–1441.
  • Ahuja, O.P., C¸ etinkaya, A., Polatoglu, Y., Harmonic univalent convex functions using a quantum calculus approach, Acta Universitatis Apulensis, 58(2019), 67–81.
  • Çakmak, S., Yaşar, E., Yalçın, S., New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacettepe Journal of Mathematics and Statistics, 51(1)(2022), 172–186.
  • Çakmak, S., Regarding a novel subclass of harmonic multivalent functions defined by higher-order differential inequality, Iranian Journal of Science, 48(2024), 1541–1550.
  • Cakmak, S., Yasar, E., Yalc¸ın Tokgöz, S., Some basic properties of a subclass of close-to-convex harmonic mappings, Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics, 15(2)(2024), 163–173.
  • Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I., 9(1984), 3–25.
  • Feje´r, L., Über die Positivita¨t von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten, Acta Litt. Ac Sei. Szeged, (1925), 75–86.
  • Goodman, A.W., Univalent Functions, vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
  • Jackson, F.H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(2)(1909), 253–281.
  • Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M., Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15(1)(2002), 63–69.
  • Ponnusamy, S., Yamamoto, H., Yanagihara, H., Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ., 58(1)(2013), 23–34.
  • Li, L., Ponnusamy, S., Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. Appl., 408(2013), 589–596.
  • Li, L., Ponnusamy, S., Injectivity of sections of univalent harmonic mappings, Nonlinear Anal., 89(2013), 276–283.
  • Salagean, G.S., Subclass of univalent functions, in Complex Analysis-Fifth Romanian Finish Seminar, (1983), 362–372.
  • Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145–152.
  • Yalçın, S., Bayram, H., On harmonic univalent functions involving q-poisson distribution series, MJPS, 8(2)(2021).
There are 17 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Article
Authors

Serkan Çakmak 0000-0003-0368-7672

Submission Date June 29, 2024
Acceptance Date November 7, 2024
Publication Date December 31, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Çakmak, S. (2024). On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. Turkish Journal of Mathematics and Computer Science, 16(2), 471-480. https://doi.org/10.47000/tjmcs.1507142
AMA Çakmak S. On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. TJMCS. December 2024;16(2):471-480. doi:10.47000/tjmcs.1507142
Chicago Çakmak, Serkan. “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 471-80. https://doi.org/10.47000/tjmcs.1507142.
EndNote Çakmak S (December 1, 2024) On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. Turkish Journal of Mathematics and Computer Science 16 2 471–480.
IEEE S. Çakmak, “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”, TJMCS, vol. 16, no. 2, pp. 471–480, 2024, doi: 10.47000/tjmcs.1507142.
ISNAD Çakmak, Serkan. “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”. Turkish Journal of Mathematics and Computer Science 16/2 (December2024), 471-480. https://doi.org/10.47000/tjmcs.1507142.
JAMA Çakmak S. On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. TJMCS. 2024;16:471–480.
MLA Çakmak, Serkan. “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 471-80, doi:10.47000/tjmcs.1507142.
Vancouver Çakmak S. On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. TJMCS. 2024;16(2):471-80.