Research Article
BibTex RIS Cite

A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor

Year 2025, Volume: 17 Issue: 2, 550 - 561, 30.12.2025
https://doi.org/10.47000/tjmcs.1632911

Abstract

In this study, we consider various geometric conditions associated with the vanishing of a generalized curvature tensor, namely the $\mathcal{T}$-tensor, on $N(\kappa)$-contact metric manifolds. We define and analyze several types of $\mathcal{T}$-flatness conditions, including $\mathcal{T}$-flat, $\xi$-$\mathcal{T}$-flat, quasi-$\mathcal{T}$-flat, and $\varphi$-$\mathcal{T}$-flat structures. By applying these flatness conditions, we obtain algebraic constraints on the curvature parameters, particularly involving the Ricci tensor. The resulting characterizations allow for the classification of $N(\kappa)$-contact metric manifolds as either Einstein or $\eta$-Einstein, depending on the specific values of the structure constants. These investigations also lead to deeper insights into the geometric structure and local isometry types of the manifolds under study.

References

  • Barman, A., On N(k)-contact metric manifolds admitting a type of semi-symmetric non-metric connection, Acta Math. Univ. Comenianae, 86(1)(2017), 81–90.
  • Blair, D.E., Kim, J.S., Tripathi, M.M., On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42(2005), 883–892.
  • Blair, D.E., Koufogiorgos, T., Papantoniou, B.J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1–3)(1995), 189–214.
  • Boeckx, E., A full classification of contact metric (k, μ)-spaces, Illinois J. Math., 44(1)(2000), 212–219.
  • De, U.C., Certain results on N(k)-contact metric manifolds, Tamkang J. Math., 49(3)(2018), 205–220.
  • De, U.C., Ghosh, S., E-Bochner curvature tensor on N(k)-contact metric manifolds, Hacet. J. Math. Stat., 43(3)(2014), 365–374.
  • De, U.C., Yildiz, A., Ghosh, S., On a class of N(k)-contact metric manifolds, Math. Reports, 16(2014), 66–74.
  • Ingalahalli, G., Anil, S., Bagewadi, C., Certain results on N(k)-contact metric manifold, Asian J. Math. Comput. Res., (2019), 123–130.
  • Ishii, Y., On conharmonic transformations, Tensor N.S., 7(1957), 73–80.
  • Majhi, P., De, U.C., Classifications of N(k)-contact metric manifolds satisfying certain curvature conditions, Acta Math. Univ. Comenianae, 84(1)(2015), 167–178.
  • Nagaraja, H.G., Somashekhara, G., T-curvature tensor in (k, μ)-contact manifolds, Math. Aeterna, 2(6)(2012), 523–532.
  • Pokhariyal, G.P., Mishra, R.S., Curvature tensors and their relativistic significance (II), Tensor, 22(1971), 41–48.
  • Pokhariyal, G.P., Mishra, R.S., Curvature tensors and their relativistic significance, Tensor, 21(1970), 254–260.
  • Pokhariyal, G.P., Relativistic significance of curvature tensors, Int. J. Math. Math. Sci., 5(1)(1982), 133–139.
  • Prasad, B., A pseudo-projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 94(2002), 163–166.
  • Tripathi, M.M., Gupta, P., On T-curvature tensor in K-contact and Sasakian manifolds, Int. Electron. J. Geom., 4(1)(2011), 32–47.
  • Tripathi, M.M., Gupta, P., T-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud., 4(1)(2011), 117–129.
  • Ünal, İ., Altin, M., N(κ)-contact metric manifolds with generalized Tanaka-Webster connection, Filomat, 35(4)(2021), 1383–1392.
  • Yano, K., Curvature and Betti Numbers, Princeton University Press, 2016.
  • Yano, K., Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Differential Geom., 2(2)(1968), 161–184.
  • Yildiz, A., De, U.C., Murathan, C., Arslan, K., On the Weyl projective curvature tensor of an N(k)-contact metric manifold, Math. Panonica, 21(1)(2010), 129–142.
There are 21 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

İnan Ünal 0000-0003-1318-9685

Mustafa Altın 0000-0001-5544-5910

Shashıkant Pandey 0000-0002-8128-2884

Submission Date February 4, 2025
Acceptance Date July 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Ünal, İ., Altın, M., & Pandey, S. (2025). A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor. Turkish Journal of Mathematics and Computer Science, 17(2), 550-561. https://doi.org/10.47000/tjmcs.1632911
AMA Ünal İ, Altın M, Pandey S. A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor. TJMCS. December 2025;17(2):550-561. doi:10.47000/tjmcs.1632911
Chicago Ünal, İnan, Mustafa Altın, and Shashıkant Pandey. “A Classification of $ N(\kappa)$-Contact Metric Manifolds With $ \mathcal{T} $-Curvature Tensor”. Turkish Journal of Mathematics and Computer Science 17, no. 2 (December 2025): 550-61. https://doi.org/10.47000/tjmcs.1632911.
EndNote Ünal İ, Altın M, Pandey S (December 1, 2025) A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor. Turkish Journal of Mathematics and Computer Science 17 2 550–561.
IEEE İ. Ünal, M. Altın, and S. Pandey, “A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor”, TJMCS, vol. 17, no. 2, pp. 550–561, 2025, doi: 10.47000/tjmcs.1632911.
ISNAD Ünal, İnan et al. “A Classification of $ N(\kappa)$-Contact Metric Manifolds With $ \mathcal{T} $-Curvature Tensor”. Turkish Journal of Mathematics and Computer Science 17/2 (December2025), 550-561. https://doi.org/10.47000/tjmcs.1632911.
JAMA Ünal İ, Altın M, Pandey S. A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor. TJMCS. 2025;17:550–561.
MLA Ünal, İnan et al. “A Classification of $ N(\kappa)$-Contact Metric Manifolds With $ \mathcal{T} $-Curvature Tensor”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 2, 2025, pp. 550-61, doi:10.47000/tjmcs.1632911.
Vancouver Ünal İ, Altın M, Pandey S. A Classification of $ N(\kappa)$-contact Metric Manifolds with $ \mathcal{T} $-curvature Tensor. TJMCS. 2025;17(2):550-61.