Research Article
BibTex RIS Cite

Year 2020, Volume: 12 Issue: 2, 157 - 160, 31.12.2020
https://doi.org/10.47000/tjmcs.822830
https://izlik.org/JA59BU83RN

Abstract

References

  • Guseinov, G.Sh., {\em Determination of an infinite Jacobi matrix from scattering data}, Doklady Akademii Nauk SSSR, \textbf{227}(6)(1976), 1289--1292.
  • Guseinov, G.Sh., {\em The inverse problem of scattering theory for a second order difference equation on the whole axis}, Doklady Akademii Nauk SSSR, \textbf{17}(1976), 1684--1688.
  • Guseinov, G.Sh., {\em Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function}, Mathematical Notes, \textbf{23}(2)(1978), 130--136.
  • Guseinov, I.M., Khanmamedov, Ag. Kh., {\em The $t\rightarrow\infty$ asymptotic regime of the Cauchy problem solution for the Toda chain with threshold-type Initial data}, Theoretical and Mathematical Physics, \textbf{119}(1999), 739--749.
  • Khanmamedov, Ag. Kh., {\em Inverse scattering problem for a discrete Sturm-Liouville Operator on the entire line}, Doklady Akademii Nauk, \textbf{431}(1)(2010), 25--26.
  • Kishakevich, Yu.L., {\em Spectral function of Marchenko type for a difference operator of an even order}, Mathematical Notes, \textbf{11}(4)(1972), 266--271.
  • Marchenko, V.A., Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977.
  • Zagorodnyuk, S., {\em The direct and inverse spectral problems for $\mathit{(2N+1)}$-diagonal complex transposition-antisymmetric matrices}, Methods Funct. Anal. Topology, \textbf{14}(2)(2008), 124--131.
  • Zagorodnyuk, S.M., {\em Direct and inverse spectral problems for $\mathit{(2N+1)}$-diagonal, complex, symmetric, non-Hermitian matrices}, Serdica Mathematical Journal, \textbf{30}(4)(2004), 471--482.

On The Solution of an Infinite System of Discrete Equations

Year 2020, Volume: 12 Issue: 2, 157 - 160, 31.12.2020
https://doi.org/10.47000/tjmcs.822830
https://izlik.org/JA59BU83RN

Abstract

 In this work, we construct the transformation operator for the infinite system of the difference equations 

$a_{n-2}y_{n-2}+b_{n-1}y_{n-1}+c_{n}y_{n}+b_{n}y_{n+1}+a_{n}y_{n+2}=\lambda y_{n}$ $(n=1,2,...)$,

where $a_{n}\neq0,$ $b_{n},$ $c_{n}$ $(n=1,2,3,...)$ are given complex numbers, investigate some important properties of the special solutions of the difference system.

References

  • Guseinov, G.Sh., {\em Determination of an infinite Jacobi matrix from scattering data}, Doklady Akademii Nauk SSSR, \textbf{227}(6)(1976), 1289--1292.
  • Guseinov, G.Sh., {\em The inverse problem of scattering theory for a second order difference equation on the whole axis}, Doklady Akademii Nauk SSSR, \textbf{17}(1976), 1684--1688.
  • Guseinov, G.Sh., {\em Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function}, Mathematical Notes, \textbf{23}(2)(1978), 130--136.
  • Guseinov, I.M., Khanmamedov, Ag. Kh., {\em The $t\rightarrow\infty$ asymptotic regime of the Cauchy problem solution for the Toda chain with threshold-type Initial data}, Theoretical and Mathematical Physics, \textbf{119}(1999), 739--749.
  • Khanmamedov, Ag. Kh., {\em Inverse scattering problem for a discrete Sturm-Liouville Operator on the entire line}, Doklady Akademii Nauk, \textbf{431}(1)(2010), 25--26.
  • Kishakevich, Yu.L., {\em Spectral function of Marchenko type for a difference operator of an even order}, Mathematical Notes, \textbf{11}(4)(1972), 266--271.
  • Marchenko, V.A., Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977.
  • Zagorodnyuk, S., {\em The direct and inverse spectral problems for $\mathit{(2N+1)}$-diagonal complex transposition-antisymmetric matrices}, Methods Funct. Anal. Topology, \textbf{14}(2)(2008), 124--131.
  • Zagorodnyuk, S.M., {\em Direct and inverse spectral problems for $\mathit{(2N+1)}$-diagonal, complex, symmetric, non-Hermitian matrices}, Serdica Mathematical Journal, \textbf{30}(4)(2004), 471--482.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Anar Adiloğlu 0000-0001-5602-5272

Mehmet Gürdal 0000-0003-0866-1869

Publication Date December 31, 2020
DOI https://doi.org/10.47000/tjmcs.822830
IZ https://izlik.org/JA59BU83RN
Published in Issue Year 2020 Volume: 12 Issue: 2

Cite

APA Adiloğlu, A., & Gürdal, M. (2020). On The Solution of an Infinite System of Discrete Equations. Turkish Journal of Mathematics and Computer Science, 12(2), 157-160. https://doi.org/10.47000/tjmcs.822830
AMA 1.Adiloğlu A, Gürdal M. On The Solution of an Infinite System of Discrete Equations. TJMCS. 2020;12(2):157-160. doi:10.47000/tjmcs.822830
Chicago Adiloğlu, Anar, and Mehmet Gürdal. 2020. “On The Solution of an Infinite System of Discrete Equations”. Turkish Journal of Mathematics and Computer Science 12 (2): 157-60. https://doi.org/10.47000/tjmcs.822830.
EndNote Adiloğlu A, Gürdal M (December 1, 2020) On The Solution of an Infinite System of Discrete Equations. Turkish Journal of Mathematics and Computer Science 12 2 157–160.
IEEE [1]A. Adiloğlu and M. Gürdal, “On The Solution of an Infinite System of Discrete Equations”, TJMCS, vol. 12, no. 2, pp. 157–160, Dec. 2020, doi: 10.47000/tjmcs.822830.
ISNAD Adiloğlu, Anar - Gürdal, Mehmet. “On The Solution of an Infinite System of Discrete Equations”. Turkish Journal of Mathematics and Computer Science 12/2 (December 1, 2020): 157-160. https://doi.org/10.47000/tjmcs.822830.
JAMA 1.Adiloğlu A, Gürdal M. On The Solution of an Infinite System of Discrete Equations. TJMCS. 2020;12:157–160.
MLA Adiloğlu, Anar, and Mehmet Gürdal. “On The Solution of an Infinite System of Discrete Equations”. Turkish Journal of Mathematics and Computer Science, vol. 12, no. 2, Dec. 2020, pp. 157-60, doi:10.47000/tjmcs.822830.
Vancouver 1.Adiloğlu A, Gürdal M. On The Solution of an Infinite System of Discrete Equations. TJMCS [Internet]. 2020 Dec. 1;12(2):157-60. Available from: https://izlik.org/JA59BU83RN