Research Article
BibTex RIS Cite

Quaternionic and Dual Quaternionic Darboux Ruled Surfaces

Year 2021, , 106 - 114, 30.06.2021
https://doi.org/10.47000/tjmcs.858793

Abstract

In this paper, firstly the ruled surface drawn by the Darboux vector is expressed as a quaternion. Then, the spatial quaternionic definition of the striction curve is given and the integral invariants of the surface are calculated. Finally, the ruled surface which corresponds to a dual curve drawn by a dual Darboux vector is derived with the help of dual spatial quaternions and dual integral invariants of the ruled surface are obtained.

References

  • [1] Aslan, S., Yaylı, Y., Quaternionic shape operator, Adv. Appl. Clifford Algebras, 27(2017), 2921–2931.
  • [2] Babaarslan, M., Yaylı, Y., A new approach to constant slope surfaces with quaternions, ISRN Geom., 8(2012), article ID 126358.
  • [3] Bharathi, K., Nagaraj, M., Quaternion valued function of a real variable Serret-Frenet formulae, Ind. J. P. Appl. Math., 18(1987), 507–511.
  • [4] Çalışkan, A., S¸enyurt, S., The dual spatial quaternionic expression of ruled surfaces, Thermal Science, 23(1)(2019), 403–411.
  • [5] Çalışkan, A., Spatial Quaternionic Curves and Ruled Surfaces, Ph.D. Thesis, Ordu University, Ordu, Turkey, 2020.
  • [6] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, USA, 1976.
  • [7] Hamilton, W.R., Elements of Quaternions, New York, 1899.
  • [8] Hacısalihoğlu, H.H., Motion Geometry and Quaternions Theory (in Turkish), University of Gazi Press, Turkey, 1983.
  • [9] Hanson, A.J., Visualing Quaternions, Elsevier, USA, 2006.
  • [10] Shoemake, K., Animating rotation with quaternion curves, Siggraph Computer Graphics, 19(1985), 245–254.
  • [11] Sivridağ, A.˙I., Güneş, R., Keles¸, S., The Serret-Frenet formulae for dual quaternion-valued functions of a single real variable, Mechanism and Machine Theory, 29(5)(1994), 749-754.
  • [12] Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969.
  • [13] Şenyurt, S., Cevahir, C., Altun, Y., On spatial quaternionic involute curve a new view, Adv. Appl. Clifford Algebr., (2016), 1–10.
  • [14] Şenyurt, S., Çalışkan, A., The quaternionic expression of ruled surfaces, Filomat, 32(16)(2018), 5753-5766.
Year 2021, , 106 - 114, 30.06.2021
https://doi.org/10.47000/tjmcs.858793

Abstract

References

  • [1] Aslan, S., Yaylı, Y., Quaternionic shape operator, Adv. Appl. Clifford Algebras, 27(2017), 2921–2931.
  • [2] Babaarslan, M., Yaylı, Y., A new approach to constant slope surfaces with quaternions, ISRN Geom., 8(2012), article ID 126358.
  • [3] Bharathi, K., Nagaraj, M., Quaternion valued function of a real variable Serret-Frenet formulae, Ind. J. P. Appl. Math., 18(1987), 507–511.
  • [4] Çalışkan, A., S¸enyurt, S., The dual spatial quaternionic expression of ruled surfaces, Thermal Science, 23(1)(2019), 403–411.
  • [5] Çalışkan, A., Spatial Quaternionic Curves and Ruled Surfaces, Ph.D. Thesis, Ordu University, Ordu, Turkey, 2020.
  • [6] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, USA, 1976.
  • [7] Hamilton, W.R., Elements of Quaternions, New York, 1899.
  • [8] Hacısalihoğlu, H.H., Motion Geometry and Quaternions Theory (in Turkish), University of Gazi Press, Turkey, 1983.
  • [9] Hanson, A.J., Visualing Quaternions, Elsevier, USA, 2006.
  • [10] Shoemake, K., Animating rotation with quaternion curves, Siggraph Computer Graphics, 19(1985), 245–254.
  • [11] Sivridağ, A.˙I., Güneş, R., Keles¸, S., The Serret-Frenet formulae for dual quaternion-valued functions of a single real variable, Mechanism and Machine Theory, 29(5)(1994), 749-754.
  • [12] Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969.
  • [13] Şenyurt, S., Cevahir, C., Altun, Y., On spatial quaternionic involute curve a new view, Adv. Appl. Clifford Algebr., (2016), 1–10.
  • [14] Şenyurt, S., Çalışkan, A., The quaternionic expression of ruled surfaces, Filomat, 32(16)(2018), 5753-5766.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Abdussamet Çalışkan 0000-0002-1512-2452

Publication Date June 30, 2021
Published in Issue Year 2021

Cite

APA Çalışkan, A. (2021). Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. Turkish Journal of Mathematics and Computer Science, 13(1), 106-114. https://doi.org/10.47000/tjmcs.858793
AMA Çalışkan A. Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. TJMCS. June 2021;13(1):106-114. doi:10.47000/tjmcs.858793
Chicago Çalışkan, Abdussamet. “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”. Turkish Journal of Mathematics and Computer Science 13, no. 1 (June 2021): 106-14. https://doi.org/10.47000/tjmcs.858793.
EndNote Çalışkan A (June 1, 2021) Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. Turkish Journal of Mathematics and Computer Science 13 1 106–114.
IEEE A. Çalışkan, “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”, TJMCS, vol. 13, no. 1, pp. 106–114, 2021, doi: 10.47000/tjmcs.858793.
ISNAD Çalışkan, Abdussamet. “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”. Turkish Journal of Mathematics and Computer Science 13/1 (June 2021), 106-114. https://doi.org/10.47000/tjmcs.858793.
JAMA Çalışkan A. Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. TJMCS. 2021;13:106–114.
MLA Çalışkan, Abdussamet. “Quaternionic and Dual Quaternionic Darboux Ruled Surfaces”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 1, 2021, pp. 106-14, doi:10.47000/tjmcs.858793.
Vancouver Çalışkan A. Quaternionic and Dual Quaternionic Darboux Ruled Surfaces. TJMCS. 2021;13(1):106-14.