BibTex RIS Cite

On Morgan-Voyce Polynomials Approximation For Linear Differential Equations

Year 2014, Volume 2, 2014, 1 - 10, 26.05.2016

Abstract

In this paper, a matrix method for approximately solving certain linear differential equations is presented. This method is called Morgan-Voyce matrix method and converts a linear differential equation into a matrix equation. Then, the equation reduces to a matrix equation corresponding to a system of linear algebraic equations with unknown Morgan-Voyce coefficients. The examples are included to demonstrate the applicability of the technique.

References

  • Ş. Yüzbaşı, N. Şahin, M. Sezer. Numerical solutions of systems of linear Fredholm integrodifferential equations with Bessel Polynomial bases. Computers&Mathematics with Applications, pp. 3079-3096, 22 April 2011.
  • M. N. S. Swamy. Further properties of Morgan-Voyce Polynomials. Fibonacci Quarterly, Vol. 6, No. 2, pp. 167-175, Apr. 1968.
  • H. H. Sorkun, S. Yalçınbas. Approximate solutions of linear Volterra integral equation systems with variable coefficients. Appl. Math. Modell., doi:10.1016/j.apm.2010.02.034., (2010).
  • A. Akyüz-Daşçıoğlu, M. Sezer. Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J. Franklin Ins., vol. 342, pp. 688-701, (2005).
  • M. Sezer and A. Akyüz-Daşcıoğlu. A Taylor method for numerical solution of generalized pantograph equations with linear functional argument. J. Comput. Appl. Math., vol. 200, pp. 217-225, (2007).
  • M. Sezer. A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials. Int J Math Educ Sci Technol., vol. 27, pp. 821-834, (1996).
  • M. Sezer, S. Yalçınbaş, and N. Şahin Approximate solution of multi-pantograph equation with variable coefficients J Comput Appl Math, vol. 214, pp. 406-416, (2008).
Year 2014, Volume 2, 2014, 1 - 10, 26.05.2016

Abstract

References

  • Ş. Yüzbaşı, N. Şahin, M. Sezer. Numerical solutions of systems of linear Fredholm integrodifferential equations with Bessel Polynomial bases. Computers&Mathematics with Applications, pp. 3079-3096, 22 April 2011.
  • M. N. S. Swamy. Further properties of Morgan-Voyce Polynomials. Fibonacci Quarterly, Vol. 6, No. 2, pp. 167-175, Apr. 1968.
  • H. H. Sorkun, S. Yalçınbas. Approximate solutions of linear Volterra integral equation systems with variable coefficients. Appl. Math. Modell., doi:10.1016/j.apm.2010.02.034., (2010).
  • A. Akyüz-Daşçıoğlu, M. Sezer. Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J. Franklin Ins., vol. 342, pp. 688-701, (2005).
  • M. Sezer and A. Akyüz-Daşcıoğlu. A Taylor method for numerical solution of generalized pantograph equations with linear functional argument. J. Comput. Appl. Math., vol. 200, pp. 217-225, (2007).
  • M. Sezer. A method for the approximate solution of the second order linear differential equations in terms of Taylor polynomials. Int J Math Educ Sci Technol., vol. 27, pp. 821-834, (1996).
  • M. Sezer, S. Yalçınbaş, and N. Şahin Approximate solution of multi-pantograph equation with variable coefficients J Comput Appl Math, vol. 214, pp. 406-416, (2008).
There are 7 citations in total.

Details

Other ID JA22TA74YU
Journal Section Articles
Authors

Özgül İlhan This is me

Niyazi Şahin This is me

Publication Date May 26, 2016
Published in Issue Year 2014 Volume 2, 2014

Cite

APA İlhan, Ö., & Şahin, N. (2016). On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. Turkish Journal of Mathematics and Computer Science, 2(1), 1-10.
AMA İlhan Ö, Şahin N. On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. TJMCS. May 2016;2(1):1-10.
Chicago İlhan, Özgül, and Niyazi Şahin. “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”. Turkish Journal of Mathematics and Computer Science 2, no. 1 (May 2016): 1-10.
EndNote İlhan Ö, Şahin N (May 1, 2016) On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. Turkish Journal of Mathematics and Computer Science 2 1 1–10.
IEEE Ö. İlhan and N. Şahin, “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”, TJMCS, vol. 2, no. 1, pp. 1–10, 2016.
ISNAD İlhan, Özgül - Şahin, Niyazi. “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”. Turkish Journal of Mathematics and Computer Science 2/1 (May 2016), 1-10.
JAMA İlhan Ö, Şahin N. On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. TJMCS. 2016;2:1–10.
MLA İlhan, Özgül and Niyazi Şahin. “On Morgan-Voyce Polynomials Approximation For Linear Differential Equations”. Turkish Journal of Mathematics and Computer Science, vol. 2, no. 1, 2016, pp. 1-10.
Vancouver İlhan Ö, Şahin N. On Morgan-Voyce Polynomials Approximation For Linear Differential Equations. TJMCS. 2016;2(1):1-10.