Research Article
BibTex RIS Cite

Some Generalized Suborbital Graphs

Year 2017, Volume: 7, 90 - 95, 19.12.2017

Abstract

We consider the notion of suborbital graphs of a group of Möbius transformations. Defining an

imprimitive action, we examine graphs arising from this action. First, we get necessary and sufficient conditions

for an edge, then we examine circuit conditions in graphs. This paper is an extension of some results in [3] [6].

References

  • Conway, J.H., Norton, S.P., Monstrous Moonshine, Bull. London Math. Soc., 11(1977), 308–339.
  • Deger, A.H., Beşenk M., G¨uler B.O., On suborbital graphs and related continued fractions, Appl. Math. Comput., 218(3)(2011), 746–750.
  • Güler, B.O., et al., Elliptic elements and circuits in suborbital graphs, Hacet. J. Math. Stat., 40(2)(2011), 203–210.
  • Güler, B.O., Köroğlu, T., Şanlı, Z., Solutions to some congruence equations via suborbital graphs, SpringerPlus, 5(1327)(2016), 1–11.
  • Jones, G.A., Singerman, D.,Wicks, K., The modular group and generalized Farey graphs, London Math. Soc. Lecture Note Series, 160(1991), 316–338.
  • Kader, S., Güler B.O., Değer, A.H., Suborbital graphs for a special subgroup of the normalizer, Iran J Sci Technol A, 34(A4)(2010), 305–312.
  • Keskin, R., Suborbital graphs for the normalizer of $\Gamma _{0}(m)$, European J. Combin., 27(2)(2006), 193–206.
  • Keskin, R., Demirtürk, B., On suborbital graphs for the normalizer of $\Gamma _{0}(N)$, Electronic J. Combin., 27(2009), R116.
  • Shimura, G., Introduction to The Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971.
  • Sims, C.C., Graphs and finite permutation groups, Math. Z., 95(1967), 76–86.
Year 2017, Volume: 7, 90 - 95, 19.12.2017

Abstract

References

  • Conway, J.H., Norton, S.P., Monstrous Moonshine, Bull. London Math. Soc., 11(1977), 308–339.
  • Deger, A.H., Beşenk M., G¨uler B.O., On suborbital graphs and related continued fractions, Appl. Math. Comput., 218(3)(2011), 746–750.
  • Güler, B.O., et al., Elliptic elements and circuits in suborbital graphs, Hacet. J. Math. Stat., 40(2)(2011), 203–210.
  • Güler, B.O., Köroğlu, T., Şanlı, Z., Solutions to some congruence equations via suborbital graphs, SpringerPlus, 5(1327)(2016), 1–11.
  • Jones, G.A., Singerman, D.,Wicks, K., The modular group and generalized Farey graphs, London Math. Soc. Lecture Note Series, 160(1991), 316–338.
  • Kader, S., Güler B.O., Değer, A.H., Suborbital graphs for a special subgroup of the normalizer, Iran J Sci Technol A, 34(A4)(2010), 305–312.
  • Keskin, R., Suborbital graphs for the normalizer of $\Gamma _{0}(m)$, European J. Combin., 27(2)(2006), 193–206.
  • Keskin, R., Demirtürk, B., On suborbital graphs for the normalizer of $\Gamma _{0}(N)$, Electronic J. Combin., 27(2009), R116.
  • Shimura, G., Introduction to The Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971.
  • Sims, C.C., Graphs and finite permutation groups, Math. Z., 95(1967), 76–86.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Tuncay Köroğlu

Bahadır Özgür Güler

Zeynep Şanlı

Publication Date December 19, 2017
Published in Issue Year 2017 Volume: 7

Cite

APA Köroğlu, T., Güler, B. Ö., & Şanlı, Z. (2017). Some Generalized Suborbital Graphs. Turkish Journal of Mathematics and Computer Science, 7, 90-95.
AMA Köroğlu T, Güler BÖ, Şanlı Z. Some Generalized Suborbital Graphs. TJMCS. December 2017;7:90-95.
Chicago Köroğlu, Tuncay, Bahadır Özgür Güler, and Zeynep Şanlı. “Some Generalized Suborbital Graphs”. Turkish Journal of Mathematics and Computer Science 7, December (December 2017): 90-95.
EndNote Köroğlu T, Güler BÖ, Şanlı Z (December 1, 2017) Some Generalized Suborbital Graphs. Turkish Journal of Mathematics and Computer Science 7 90–95.
IEEE T. Köroğlu, B. Ö. Güler, and Z. Şanlı, “Some Generalized Suborbital Graphs”, TJMCS, vol. 7, pp. 90–95, 2017.
ISNAD Köroğlu, Tuncay et al. “Some Generalized Suborbital Graphs”. Turkish Journal of Mathematics and Computer Science 7 (December 2017), 90-95.
JAMA Köroğlu T, Güler BÖ, Şanlı Z. Some Generalized Suborbital Graphs. TJMCS. 2017;7:90–95.
MLA Köroğlu, Tuncay et al. “Some Generalized Suborbital Graphs”. Turkish Journal of Mathematics and Computer Science, vol. 7, 2017, pp. 90-95.
Vancouver Köroğlu T, Güler BÖ, Şanlı Z. Some Generalized Suborbital Graphs. TJMCS. 2017;7:90-5.