Research Article
BibTex RIS Cite

Trees of the Normalizer of Modular Group in the Picard Group

Year 2018, Volume: 9, 63 - 70, 28.12.2018

Abstract

In this study, we investigate trees arising from the imprimitive action of the normalizer of Modular
group in the Picard group on extended rational numbers. We determine the farthest vertex from a given vertex
in hyperbolic paths of minimal lengths. We also include some results of the suborbital graph F_{u,N} related to a
continued fraction representation of a rational number.

References

  • Akbaş, M., On Suborbital Graphs for the Modular Group, Bulletin of the London Mathematical Society 33(6)(2001), 647–652.
  • Akbaş, M., Bas¸kan, T., Suborbital graphs for the normalizer of 􀀀0(N), Turk J Math, 20(1996), 379–387.
  • Beşenk, M., The action of S L(2;C) on hyperbolic 3-space and orbital graphs, Graphs Combin., 34(4)(2018), 545–554.
  • Bigg, N.L., White, A.T., Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series, 33, CUP, Cambridge, 1979.
  • Chaichana K, Jaipong P, Suborbital Graphs for Congruence Subgroups of the Extended Modular Group and Continued Fractions, Proceedings of AMM, 20(2015), 86–95.
  • Cuyt A. et al., Handbook of Continued Fractions for Special Functions, Springer, New York, 2008.
  • Değer AH, Beşenk M, Güler BO, On suborbital graphs and related continued fractions, Appl. Math. Comput., 218(3)(2011), 746–750.
  • Değer AH, Vertices of paths of minimal lengths on suborbital graphs, Filomat, 31(4)(2017), 913–923.
  • Jones GA, Singerman D, Complex functions: an algebraic and geometric viewpoint, Cambridge University Press, Cambridge, 1987.
  • Jones GA, Singerman D, Wicks K, The modular group and generalized Farey graphs. London Math. Soc. Lecture Note Series 160(1991), 316–338.
  • Güler, B.Ö . et al., Elliptic elements and circuits in suborbital graphs, Hacet. J. Math. Stat., 40(2)(2011), 203–210.
  • Güler, B.Ö ., Kör, T., Şanlı, Z.: Solution to some congruence equations via suborbital graphs. Springerplus, 2016(5)(2016), 1-11.
  • Kader, S., Circuits in suborbital graphs for the normalizer. Graphs Combin. 33(6)(2017), 1531–1542.
  • Keskin, R., Suborbital graphs for the normalizer 􀀀0(m). European Journal of Combinatorics 27(2)(2006), 193–206.
  • Keskin, R., Demirt¨urk, B., On suborbital graphs for the normalizer of 􀀀0(N). The Electronic Journal of Combinatorics 16(1)(2009), 1–18.
  • Köroğlu, T., Güler, B.Ö., Şanlı, Z., Suborbital graphs for the Atkin-Lehner group. Turk J Math. 41(2017), 235–243.
  • Köroğlu, T., Güler, B.Ö ., Şanlı, Z., Some Generalized Suborbital Graphs. Turk. J. Math. Comput. Sci., 7(2017), 90–95.
  • Kushwaha, S.; Sarma, R.; Continued fractions arising from F1;3. Ramanujan J. 46(3)(2018), 605–631.
  • Nathanson, M.B., A forest of linear fractional transformations. Int. J. Number Theory 11(4)(2015), 1275–1299.
  • Ponton, L., Two trees enumerating the positive rationals. Integers 18A(2018), Paper No. A17, 16 pp.
  • Sarma R, Kushwaha S, Krishnan R, Continued fractions arising from F1;2. J. Number Theory 154(2015), 179–200.
  • Wall H.S., Analytic Theory of Continued Fractions, first ed., D.Van Nostrand Co, New York, 1948.
  • Yazıcı Gözütok, N., Güler, B.Ö ., Suborbital Graphs of the Normalizer of Modular Group in the Picard Group, Iran J Sci Technol Trans Sci 42(4)(2018), 2167–2174.
Year 2018, Volume: 9, 63 - 70, 28.12.2018

Abstract

References

  • Akbaş, M., On Suborbital Graphs for the Modular Group, Bulletin of the London Mathematical Society 33(6)(2001), 647–652.
  • Akbaş, M., Bas¸kan, T., Suborbital graphs for the normalizer of 􀀀0(N), Turk J Math, 20(1996), 379–387.
  • Beşenk, M., The action of S L(2;C) on hyperbolic 3-space and orbital graphs, Graphs Combin., 34(4)(2018), 545–554.
  • Bigg, N.L., White, A.T., Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series, 33, CUP, Cambridge, 1979.
  • Chaichana K, Jaipong P, Suborbital Graphs for Congruence Subgroups of the Extended Modular Group and Continued Fractions, Proceedings of AMM, 20(2015), 86–95.
  • Cuyt A. et al., Handbook of Continued Fractions for Special Functions, Springer, New York, 2008.
  • Değer AH, Beşenk M, Güler BO, On suborbital graphs and related continued fractions, Appl. Math. Comput., 218(3)(2011), 746–750.
  • Değer AH, Vertices of paths of minimal lengths on suborbital graphs, Filomat, 31(4)(2017), 913–923.
  • Jones GA, Singerman D, Complex functions: an algebraic and geometric viewpoint, Cambridge University Press, Cambridge, 1987.
  • Jones GA, Singerman D, Wicks K, The modular group and generalized Farey graphs. London Math. Soc. Lecture Note Series 160(1991), 316–338.
  • Güler, B.Ö . et al., Elliptic elements and circuits in suborbital graphs, Hacet. J. Math. Stat., 40(2)(2011), 203–210.
  • Güler, B.Ö ., Kör, T., Şanlı, Z.: Solution to some congruence equations via suborbital graphs. Springerplus, 2016(5)(2016), 1-11.
  • Kader, S., Circuits in suborbital graphs for the normalizer. Graphs Combin. 33(6)(2017), 1531–1542.
  • Keskin, R., Suborbital graphs for the normalizer 􀀀0(m). European Journal of Combinatorics 27(2)(2006), 193–206.
  • Keskin, R., Demirt¨urk, B., On suborbital graphs for the normalizer of 􀀀0(N). The Electronic Journal of Combinatorics 16(1)(2009), 1–18.
  • Köroğlu, T., Güler, B.Ö., Şanlı, Z., Suborbital graphs for the Atkin-Lehner group. Turk J Math. 41(2017), 235–243.
  • Köroğlu, T., Güler, B.Ö ., Şanlı, Z., Some Generalized Suborbital Graphs. Turk. J. Math. Comput. Sci., 7(2017), 90–95.
  • Kushwaha, S.; Sarma, R.; Continued fractions arising from F1;3. Ramanujan J. 46(3)(2018), 605–631.
  • Nathanson, M.B., A forest of linear fractional transformations. Int. J. Number Theory 11(4)(2015), 1275–1299.
  • Ponton, L., Two trees enumerating the positive rationals. Integers 18A(2018), Paper No. A17, 16 pp.
  • Sarma R, Kushwaha S, Krishnan R, Continued fractions arising from F1;2. J. Number Theory 154(2015), 179–200.
  • Wall H.S., Analytic Theory of Continued Fractions, first ed., D.Van Nostrand Co, New York, 1948.
  • Yazıcı Gözütok, N., Güler, B.Ö ., Suborbital Graphs of the Normalizer of Modular Group in the Picard Group, Iran J Sci Technol Trans Sci 42(4)(2018), 2167–2174.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nazlı Yazıcı Gözütok

İlgıt Zengin This is me

Bahadır Özgür Güler This is me

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 9

Cite

APA Yazıcı Gözütok, N., Zengin, İ., & Güler, B. Ö. (2018). Trees of the Normalizer of Modular Group in the Picard Group. Turkish Journal of Mathematics and Computer Science, 9, 63-70.
AMA Yazıcı Gözütok N, Zengin İ, Güler BÖ. Trees of the Normalizer of Modular Group in the Picard Group. TJMCS. December 2018;9:63-70.
Chicago Yazıcı Gözütok, Nazlı, İlgıt Zengin, and Bahadır Özgür Güler. “Trees of the Normalizer of Modular Group in the Picard Group”. Turkish Journal of Mathematics and Computer Science 9, December (December 2018): 63-70.
EndNote Yazıcı Gözütok N, Zengin İ, Güler BÖ (December 1, 2018) Trees of the Normalizer of Modular Group in the Picard Group. Turkish Journal of Mathematics and Computer Science 9 63–70.
IEEE N. Yazıcı Gözütok, İ. Zengin, and B. Ö. Güler, “Trees of the Normalizer of Modular Group in the Picard Group”, TJMCS, vol. 9, pp. 63–70, 2018.
ISNAD Yazıcı Gözütok, Nazlı et al. “Trees of the Normalizer of Modular Group in the Picard Group”. Turkish Journal of Mathematics and Computer Science 9 (December 2018), 63-70.
JAMA Yazıcı Gözütok N, Zengin İ, Güler BÖ. Trees of the Normalizer of Modular Group in the Picard Group. TJMCS. 2018;9:63–70.
MLA Yazıcı Gözütok, Nazlı et al. “Trees of the Normalizer of Modular Group in the Picard Group”. Turkish Journal of Mathematics and Computer Science, vol. 9, 2018, pp. 63-70.
Vancouver Yazıcı Gözütok N, Zengin İ, Güler BÖ. Trees of the Normalizer of Modular Group in the Picard Group. TJMCS. 2018;9:63-70.