A Truncated Bell Series Approach to Solve Systems of Generalized Delay Differential Equations with Variable Coefficients
Year 2019,
Volume: 11, 105 - 113, 30.12.2019
Gökçe Yıldız
,
Mehmet Sezer
Abstract
In this study, a matrix method based on collocation points and Bell polynomials are improved to obtain the approximate solutions of systems of high-order generalized delay differential equations with variable coefficients. The presented technique reduces the solution of the mentioned delay system under the initial conditions to the solution of a matrix equation with the unknown Bell coefficients. Thereby, the approximate solution is obtained in terms of Bell polynomials. In addition, some examples along with residual error analysis are performed to illustrate the efficiency of the method; the obtained results are scrutinized and interpreted.
References
- Abdel-Halim, I., \textit{Hassan application to differential transformation method for solving systems of differential equations}, Appl Math Model, \textbf{32(12)}(2008), 2552--2559.
- Ba\c{s}ar, U., Sezer, M., Numerical Solution Based on Stirling Polynomials for Solving Generalized Linear Integro-Differential Equations with Mixed Functional Arguments, Proceeding of 2. International University Industry Cooperation, R\&D and Innovation Congress, (2018), 141--148.
- Bell, E.T, \textit{Exponential polynomials}, Ann. Math., \textbf{35(2)}(1934), 258--277.
- \c{C}am, \c{S}., \textit{Stirling Say\i lar\i }, Matematik D\"{u}nyas\i , (2005), 30--34.
- \c{C}elik, I., \textit{Collocation method and residual correction using Chebyshev series}, Appl. Math. Comput., \textbf{174(2)}(2006), 910--920.
- \c{C}etin, M., G\"{u}rb\"{u}z, B., Sezer, M., \textit{Lucas collocation method for system of high order linear functional differential equtions}, Journal of Science and Arts, \textbf{4(45)}(2018), 891--910.
- G\"{o}kmen, E., I\c{s}\i k, O.R., Sezer, M., \textit{Taylor collocation approach for delayed Lotka-Volterra predator-prey system}, Applied Mathematics and Computation, \textbf{268}(2015), 671--684.
- G\"{o}kmen, E., Sezer, M., \textit{Taylor collocation method for systems of high-order linear differential-difference equations with variable coefficients}, Ain Shams Engineering Journal, \textbf{4}(2013), 117--125.
- G\"{u}mg\"{u}m, S., Bayku\c{s} Sava\c{s}aneril, N., K\"{u}rk\c{s}\"{u}, O.K., Sezer, M., \textit{A numerical technique based on Lucas polynomials together with standard and Chebyshev-Lobatto collocation points for solving functional integro-differential equations involving variable delays}, Sakarya University Journal of Science, \textbf{22(6)}(2018), 1659--1668.
- Maleknejad, K., Mirzae, F., Abbasbandy, S., \textit{Solving linear integro-differential equations system by using rationalized Haar functions method}, Appl. Math. Comput., \textbf{155}(2004), 317--328.
- Mollao\u{g}lu, T., Sezer, M., \textit{A numerical approach with residual error estimation for solution of high-order linear differential-difference equations by using Gegenbauer polynomials}, CBU J.of Sci., \textbf{13(1)}(2017), 39--49.
- Oguz, C., Sezer, M., Oguz, A.D., \textit{Chelyshkov collocation approach to solve the systems of linear functional differential equations}, NTMSCI, \textbf{3(4)}(2015), 83--97.
- Oliveira, F.A., \textit{Collacation and residual correction}, Numer. Math., \textbf{36}(1980), 27--31.
- Saeed, R.K., Rahman B.M., \textit{Adomian decomposition method for solving system of delay differential equation}, Australian Journal of Basic and Applied Sciences, \textbf{4(8)}(2010), 3613--3621.
- Sun, Y., Galip Ulsoy, A., Nelson, P.W., \textit{Solution of systems of linear delay differential equations via Laplace transformation}, Proceedings of the 45th IEEE Conference on Decision and Control, (2006), 13--15.
- Van Gorder, R.A., \textit{Recursive relations for Bell polynomials of arbitrary positive non-integer order}, International Mathematical Forum, \textbf{5(37)}(2010), 1819--1821.
- Yal\c{c}\i nba\c{s}, S., Akkaya, T., \textit{A Numerical approach for solving linear integro-differential-difference equations with Boubaker polynomial bases}, Ain Shams Engineering Journal, \textbf{3}(2012), 153--161.
- Zurigat, M., Momani, S., Odibat, Z., Alawneh, A., \textit{The homotopy analysis method for handling systems of fractional differential equations}, Appl Math Modell, \textbf{34}(2010), 24--35.
Year 2019,
Volume: 11, 105 - 113, 30.12.2019
Gökçe Yıldız
,
Mehmet Sezer
References
- Abdel-Halim, I., \textit{Hassan application to differential transformation method for solving systems of differential equations}, Appl Math Model, \textbf{32(12)}(2008), 2552--2559.
- Ba\c{s}ar, U., Sezer, M., Numerical Solution Based on Stirling Polynomials for Solving Generalized Linear Integro-Differential Equations with Mixed Functional Arguments, Proceeding of 2. International University Industry Cooperation, R\&D and Innovation Congress, (2018), 141--148.
- Bell, E.T, \textit{Exponential polynomials}, Ann. Math., \textbf{35(2)}(1934), 258--277.
- \c{C}am, \c{S}., \textit{Stirling Say\i lar\i }, Matematik D\"{u}nyas\i , (2005), 30--34.
- \c{C}elik, I., \textit{Collocation method and residual correction using Chebyshev series}, Appl. Math. Comput., \textbf{174(2)}(2006), 910--920.
- \c{C}etin, M., G\"{u}rb\"{u}z, B., Sezer, M., \textit{Lucas collocation method for system of high order linear functional differential equtions}, Journal of Science and Arts, \textbf{4(45)}(2018), 891--910.
- G\"{o}kmen, E., I\c{s}\i k, O.R., Sezer, M., \textit{Taylor collocation approach for delayed Lotka-Volterra predator-prey system}, Applied Mathematics and Computation, \textbf{268}(2015), 671--684.
- G\"{o}kmen, E., Sezer, M., \textit{Taylor collocation method for systems of high-order linear differential-difference equations with variable coefficients}, Ain Shams Engineering Journal, \textbf{4}(2013), 117--125.
- G\"{u}mg\"{u}m, S., Bayku\c{s} Sava\c{s}aneril, N., K\"{u}rk\c{s}\"{u}, O.K., Sezer, M., \textit{A numerical technique based on Lucas polynomials together with standard and Chebyshev-Lobatto collocation points for solving functional integro-differential equations involving variable delays}, Sakarya University Journal of Science, \textbf{22(6)}(2018), 1659--1668.
- Maleknejad, K., Mirzae, F., Abbasbandy, S., \textit{Solving linear integro-differential equations system by using rationalized Haar functions method}, Appl. Math. Comput., \textbf{155}(2004), 317--328.
- Mollao\u{g}lu, T., Sezer, M., \textit{A numerical approach with residual error estimation for solution of high-order linear differential-difference equations by using Gegenbauer polynomials}, CBU J.of Sci., \textbf{13(1)}(2017), 39--49.
- Oguz, C., Sezer, M., Oguz, A.D., \textit{Chelyshkov collocation approach to solve the systems of linear functional differential equations}, NTMSCI, \textbf{3(4)}(2015), 83--97.
- Oliveira, F.A., \textit{Collacation and residual correction}, Numer. Math., \textbf{36}(1980), 27--31.
- Saeed, R.K., Rahman B.M., \textit{Adomian decomposition method for solving system of delay differential equation}, Australian Journal of Basic and Applied Sciences, \textbf{4(8)}(2010), 3613--3621.
- Sun, Y., Galip Ulsoy, A., Nelson, P.W., \textit{Solution of systems of linear delay differential equations via Laplace transformation}, Proceedings of the 45th IEEE Conference on Decision and Control, (2006), 13--15.
- Van Gorder, R.A., \textit{Recursive relations for Bell polynomials of arbitrary positive non-integer order}, International Mathematical Forum, \textbf{5(37)}(2010), 1819--1821.
- Yal\c{c}\i nba\c{s}, S., Akkaya, T., \textit{A Numerical approach for solving linear integro-differential-difference equations with Boubaker polynomial bases}, Ain Shams Engineering Journal, \textbf{3}(2012), 153--161.
- Zurigat, M., Momani, S., Odibat, Z., Alawneh, A., \textit{The homotopy analysis method for handling systems of fractional differential equations}, Appl Math Modell, \textbf{34}(2010), 24--35.