Research Article
BibTex RIS Cite
Year 2020, Volume: 12 Issue: 2, 161 - 165, 31.12.2020
https://doi.org/10.47000/tjmcs.616122

Abstract

References

  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 205, 1997.
  • Hacisalihoğlu, H.H., Diferensiyel Geometri, Cilt 1, İnönü Üniversitesi Yayinlari, Malatya 1994.
  • İlarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstratio Mathematica, 16(4)(2008), 931--939.
  • Kılıçoğlu, Ş., Şenyut, S., An examination on NP* curves in $E^3$, Turk. J. Math. Comput. Sci, 12(1)(2020), 26--30.
  • Körpınar, T., Sarıaydın, M.T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3-space, AMO, 15(2015), 71.
  • Lipschutz, M.M., Diferential Geometry, Schaum's Outlines.
  • Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry, 88(1)(2008), 120--126.
  • Schief, W.K., On the integrability of Bertrand curves and Razzaboni surfaces, Journal of Geometry and Physics, 45(1-2)(2003), 130--150.

On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$

Year 2020, Volume: 12 Issue: 2, 161 - 165, 31.12.2020
https://doi.org/10.47000/tjmcs.616122

Abstract

In this paper we have defined and examined the new kind curves, with the principal normal vector of the first curve and the vector lying on the osculator plane of the second curve are linearly dependent. As a result we
have called these new curves as $N-T^{\ast }N^{\ast }$ curves. Also similiar to the other offset curves under the spesific condition, we give Frenet apparatus of the second curve based on the Frenet apparatus of the
first curve.

References

  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 205, 1997.
  • Hacisalihoğlu, H.H., Diferensiyel Geometri, Cilt 1, İnönü Üniversitesi Yayinlari, Malatya 1994.
  • İlarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstratio Mathematica, 16(4)(2008), 931--939.
  • Kılıçoğlu, Ş., Şenyut, S., An examination on NP* curves in $E^3$, Turk. J. Math. Comput. Sci, 12(1)(2020), 26--30.
  • Körpınar, T., Sarıaydın, M.T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3-space, AMO, 15(2015), 71.
  • Lipschutz, M.M., Diferential Geometry, Schaum's Outlines.
  • Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry, 88(1)(2008), 120--126.
  • Schief, W.K., On the integrability of Bertrand curves and Razzaboni surfaces, Journal of Geometry and Physics, 45(1-2)(2003), 130--150.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Şeyda Kılıçoglu 0000-0003-0252-1574

Süleyman Şenyurt 0000-0003-1097-5541

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 12 Issue: 2

Cite

APA Kılıçoglu, Ş., & Şenyurt, S. (2020). On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. Turkish Journal of Mathematics and Computer Science, 12(2), 161-165. https://doi.org/10.47000/tjmcs.616122
AMA Kılıçoglu Ş, Şenyurt S. On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. TJMCS. December 2020;12(2):161-165. doi:10.47000/tjmcs.616122
Chicago Kılıçoglu, Şeyda, and Süleyman Şenyurt. “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”. Turkish Journal of Mathematics and Computer Science 12, no. 2 (December 2020): 161-65. https://doi.org/10.47000/tjmcs.616122.
EndNote Kılıçoglu Ş, Şenyurt S (December 1, 2020) On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. Turkish Journal of Mathematics and Computer Science 12 2 161–165.
IEEE Ş. Kılıçoglu and S. Şenyurt, “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”, TJMCS, vol. 12, no. 2, pp. 161–165, 2020, doi: 10.47000/tjmcs.616122.
ISNAD Kılıçoglu, Şeyda - Şenyurt, Süleyman. “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”. Turkish Journal of Mathematics and Computer Science 12/2 (December 2020), 161-165. https://doi.org/10.47000/tjmcs.616122.
JAMA Kılıçoglu Ş, Şenyurt S. On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. TJMCS. 2020;12:161–165.
MLA Kılıçoglu, Şeyda and Süleyman Şenyurt. “On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$”. Turkish Journal of Mathematics and Computer Science, vol. 12, no. 2, 2020, pp. 161-5, doi:10.47000/tjmcs.616122.
Vancouver Kılıçoglu Ş, Şenyurt S. On The Curves $N-T^{\ast }N^{\ast }$ in $E^3$. TJMCS. 2020;12(2):161-5.