Research Article
BibTex RIS Cite

Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms

Year 2023, Volume: 15 Issue: 2, 391 - 402, 31.12.2023
https://doi.org/10.47000/tjmcs.1194308

Abstract

The object of the present paper is to study Quasi-concircularly flat and $\phi-$quasi-concircularly flat generalized Sasakian-space-forms. Also, we consider generalized Sasakian-space-forms satisfying the condition $P(\xi, X).\widetilde{V}=0,\ \widetilde{V}(\xi, X).P=0, \ $ and $\widetilde{V}(\xi, X).\widetilde{V}=0$ and we obtain some important results. Finally, we give an example.

References

  • Alegre, P., Blair, D.E., Carrazo, A., Generalized Sasakian-space-forms, Israel J. Math., 141(2004), 157–183.
  • Alegre, P., Carriazo, A., Structure on generalized Sasakian-space-forms, Differential Geometry and Its Applications, 26(2008), 656–666.
  • Ahmad, M., Haseeb, A., Jun, J.B., Quasi-concircular curvature tensor on a Lorentzian β−Kenmotsu manifold, Journal of the Chungcheong Mathematical Society, 32(3)(2019).
  • Blair, D.E., Lecture Notes in Mathematics, Springer Verleg, Berlin, 1976.
  • Blair, D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, 2002.
  • Chaubey, S.K., Yadav, S.K., W-semisymmetric generalized Sasakian-space-forms, Advances in Pure and Applied Mathematics, (2018), 1–10.
  • Cabrerizo, J.L., Fernandez, L.M., Fernandez, M., Zhen, G.. The structure of a class of k-contact manifolds, Acta Math. Hungar, 82(4)(1999), 331–340.
  • De, U.C., Majhi, P., On the Q−curvature tensor on a generalized Sasakian-spac-form, Kragujevac Journal of Mathematics, 43(3)(2019), 333–349.
  • De, U.C., Sarkar, A., Some results on generalized Sasakian-space-forms, Thai J. Math., 8(2010), 1–10.
  • De, U.C., Yildiz, A., Certain curvature conditions on generalized Sasakian-space-forms, Quaest. Math., 38(4)(2015), 495–504.
  • Hui, S.K., Debabrata, C., Generalized Sasakian-space-forms and Ricci almost solitons with a conformal killing vector field, NTMSCI, 4(3) (2016), 263–269 .
  • Kim, U.K., Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat., 26(2006), 55–67.
  • Majhi, P., De, U.C., The Structure of a Class of Generalized Sasakian-Space-Forms, Extracta Mathematicae, 27(2)(2012), 301–308.
  • Mantica, C.A., Suh, Y.J., Pseudo−Q−symmetric Riemannian manifolds, Int. J. Geo. Methods Mod. Phys., 10(5)(2013).
  • Narain, D., Prakash, A., Prasad, B., Quasi concircular curvature tensor on an Lorentzian para-Sasakian manifold, Bull. Cal. Math,. Soc., 101(4)(2009), 387–394.
  • Nagaraja, H.G., Somashekhara, G., Shashidhar, S., On generalized Sasakian space-froms, ISRN Geometry, 2012(2012).
  • Özgür, C., ϕ−Conformally flat LP-Sasakian manifold, Rad. Mat., 12(1)(2003), 99–106.
  • Öztürk, H., Some curvature conditions on α-cosymplectic manifolds, Mathematics and Statistics, 1(4)(2013), 188–195.
  • Prasad, B., Mourya, A., Quasi concircular curvature tensor, News Bull. Cal. Math. Soc., 30(1-3) (2007), 5–6.
  • Prasad, B., Yadav, R.P.S., On Semi-generalized Recurrent LP-Sasakian Manifold, J. Nat. Acad. Math., 31(2017), 57–69.
  • Shukla, N.C.V., Shah, R.J. , Generalized Sasakian space form with concircular curvature tensor, J. Rajasthan Acad. Phy. Sci., 10(1)(2011).
  • Sular, S., Özgür, C., Generalized Sasakian space-forms with semi-symmetric non-metric connection, Proceeding of the Estonian Academy of Sciences, 60(4)(2011), 251–257.
  • Shah, R.Jung, Genralized Sasakian-space forms with D−Conformal curvature tensor, Kathmandu University Journal of Science, Engineering and Technology, 8(2)(2012), 48–56.
  • Sarkar, A., Akbar, A., Generalized Sasakian space-forms with projective curvature tensor, Demonstratio Mathematica, 43(3)(2014), 725–735.
  • Singh, A., Kishor, S., Generalized recurrent and genaralized Ricci recurent generalized Sasakian space forms, Palestine Journal of Mathematics, 9(2)(2020), 866–873.
  • Singh, J.P., Lalmalsawma, C., Symmetries of Sasakian generalized Sasakian-space-form admitting generalized Tanaka-Webster connection, Tamkang Journal of Mathematics, 52(2)(2021), 229–240.
  • Singh,G., Prasad, B., Some properties of α−cosymplectic manifolds, Journal of Progressive Science, 10(01&02)(2019), 47–53.
  • Venkatesha, B., Shanmukha, W2-Curvature tensor on generalized Sasakian space forms, CUBO A Mathematical Journal, 20(01)(2018), 17–29.
  • Yano, K., Concircular geometry I. Concircular transformation, Proc. Imp. Acad. Tokyo, 16(1940), 195–200.
  • Yano, K., Kon, M., Structures on Manifolds, Series in Pure Mathematis, World Scientific Publ. Co., Singapore, 1984.
  • Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7(1992), 5–10.
  • Zhen, G., Carbrerizo, J.L., Fernandez, L.M., Fernandez, M., On ξ−conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28(6)(1997), 725–734.
Year 2023, Volume: 15 Issue: 2, 391 - 402, 31.12.2023
https://doi.org/10.47000/tjmcs.1194308

Abstract

References

  • Alegre, P., Blair, D.E., Carrazo, A., Generalized Sasakian-space-forms, Israel J. Math., 141(2004), 157–183.
  • Alegre, P., Carriazo, A., Structure on generalized Sasakian-space-forms, Differential Geometry and Its Applications, 26(2008), 656–666.
  • Ahmad, M., Haseeb, A., Jun, J.B., Quasi-concircular curvature tensor on a Lorentzian β−Kenmotsu manifold, Journal of the Chungcheong Mathematical Society, 32(3)(2019).
  • Blair, D.E., Lecture Notes in Mathematics, Springer Verleg, Berlin, 1976.
  • Blair, D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, 2002.
  • Chaubey, S.K., Yadav, S.K., W-semisymmetric generalized Sasakian-space-forms, Advances in Pure and Applied Mathematics, (2018), 1–10.
  • Cabrerizo, J.L., Fernandez, L.M., Fernandez, M., Zhen, G.. The structure of a class of k-contact manifolds, Acta Math. Hungar, 82(4)(1999), 331–340.
  • De, U.C., Majhi, P., On the Q−curvature tensor on a generalized Sasakian-spac-form, Kragujevac Journal of Mathematics, 43(3)(2019), 333–349.
  • De, U.C., Sarkar, A., Some results on generalized Sasakian-space-forms, Thai J. Math., 8(2010), 1–10.
  • De, U.C., Yildiz, A., Certain curvature conditions on generalized Sasakian-space-forms, Quaest. Math., 38(4)(2015), 495–504.
  • Hui, S.K., Debabrata, C., Generalized Sasakian-space-forms and Ricci almost solitons with a conformal killing vector field, NTMSCI, 4(3) (2016), 263–269 .
  • Kim, U.K., Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat., 26(2006), 55–67.
  • Majhi, P., De, U.C., The Structure of a Class of Generalized Sasakian-Space-Forms, Extracta Mathematicae, 27(2)(2012), 301–308.
  • Mantica, C.A., Suh, Y.J., Pseudo−Q−symmetric Riemannian manifolds, Int. J. Geo. Methods Mod. Phys., 10(5)(2013).
  • Narain, D., Prakash, A., Prasad, B., Quasi concircular curvature tensor on an Lorentzian para-Sasakian manifold, Bull. Cal. Math,. Soc., 101(4)(2009), 387–394.
  • Nagaraja, H.G., Somashekhara, G., Shashidhar, S., On generalized Sasakian space-froms, ISRN Geometry, 2012(2012).
  • Özgür, C., ϕ−Conformally flat LP-Sasakian manifold, Rad. Mat., 12(1)(2003), 99–106.
  • Öztürk, H., Some curvature conditions on α-cosymplectic manifolds, Mathematics and Statistics, 1(4)(2013), 188–195.
  • Prasad, B., Mourya, A., Quasi concircular curvature tensor, News Bull. Cal. Math. Soc., 30(1-3) (2007), 5–6.
  • Prasad, B., Yadav, R.P.S., On Semi-generalized Recurrent LP-Sasakian Manifold, J. Nat. Acad. Math., 31(2017), 57–69.
  • Shukla, N.C.V., Shah, R.J. , Generalized Sasakian space form with concircular curvature tensor, J. Rajasthan Acad. Phy. Sci., 10(1)(2011).
  • Sular, S., Özgür, C., Generalized Sasakian space-forms with semi-symmetric non-metric connection, Proceeding of the Estonian Academy of Sciences, 60(4)(2011), 251–257.
  • Shah, R.Jung, Genralized Sasakian-space forms with D−Conformal curvature tensor, Kathmandu University Journal of Science, Engineering and Technology, 8(2)(2012), 48–56.
  • Sarkar, A., Akbar, A., Generalized Sasakian space-forms with projective curvature tensor, Demonstratio Mathematica, 43(3)(2014), 725–735.
  • Singh, A., Kishor, S., Generalized recurrent and genaralized Ricci recurent generalized Sasakian space forms, Palestine Journal of Mathematics, 9(2)(2020), 866–873.
  • Singh, J.P., Lalmalsawma, C., Symmetries of Sasakian generalized Sasakian-space-form admitting generalized Tanaka-Webster connection, Tamkang Journal of Mathematics, 52(2)(2021), 229–240.
  • Singh,G., Prasad, B., Some properties of α−cosymplectic manifolds, Journal of Progressive Science, 10(01&02)(2019), 47–53.
  • Venkatesha, B., Shanmukha, W2-Curvature tensor on generalized Sasakian space forms, CUBO A Mathematical Journal, 20(01)(2018), 17–29.
  • Yano, K., Concircular geometry I. Concircular transformation, Proc. Imp. Acad. Tokyo, 16(1940), 195–200.
  • Yano, K., Kon, M., Structures on Manifolds, Series in Pure Mathematis, World Scientific Publ. Co., Singapore, 1984.
  • Zhen, G., On conformal symmetric K-contact manifolds, Chinese Quart. J. Math., 7(1992), 5–10.
  • Zhen, G., Carbrerizo, J.L., Fernandez, L.M., Fernandez, M., On ξ−conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28(6)(1997), 725–734.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Rana Pratap Singh Yadav 0000-0001-6640-6247

Bhagwat Prasad 0000-0002-3782-990X

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Yadav, R. P. S., & Prasad, B. (2023). Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms. Turkish Journal of Mathematics and Computer Science, 15(2), 391-402. https://doi.org/10.47000/tjmcs.1194308
AMA Yadav RPS, Prasad B. Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms. TJMCS. December 2023;15(2):391-402. doi:10.47000/tjmcs.1194308
Chicago Yadav, Rana Pratap Singh, and Bhagwat Prasad. “Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms”. Turkish Journal of Mathematics and Computer Science 15, no. 2 (December 2023): 391-402. https://doi.org/10.47000/tjmcs.1194308.
EndNote Yadav RPS, Prasad B (December 1, 2023) Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms. Turkish Journal of Mathematics and Computer Science 15 2 391–402.
IEEE R. P. S. Yadav and B. Prasad, “Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms”, TJMCS, vol. 15, no. 2, pp. 391–402, 2023, doi: 10.47000/tjmcs.1194308.
ISNAD Yadav, Rana Pratap Singh - Prasad, Bhagwat. “Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms”. Turkish Journal of Mathematics and Computer Science 15/2 (December 2023), 391-402. https://doi.org/10.47000/tjmcs.1194308.
JAMA Yadav RPS, Prasad B. Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms. TJMCS. 2023;15:391–402.
MLA Yadav, Rana Pratap Singh and Bhagwat Prasad. “Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 2, 2023, pp. 391-02, doi:10.47000/tjmcs.1194308.
Vancouver Yadav RPS, Prasad B. Quasi-Concircular Curvature Tensor on Generalized Sasakian Space-Forms. TJMCS. 2023;15(2):391-402.