Research Article
BibTex RIS Cite

On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds

Year 2023, Volume: 15 Issue: 2, 464 - 469, 31.12.2023
https://doi.org/10.47000/tjmcs.1322351

Abstract

A Lorentzian para-Sasakian (LP-Sasakian) space form is a kind of para-Sasakian manifold with constant $ \varphi- $ holomorphic sectional curvature. The presented paper is on the curvatures of semi-invariant submanifolds of a LP-Sasakian space form. Firstly, the definition of a semi-invariant submanifold of LP-Sasakian space form is given and an example is presented. Then, using Gauss equation related to curvatures used for obtaining some important results on Ricci and scalar curvatures. Moreover, by suffering from these results conditions of distributions being Einstein have been examined. Finally, semi-invariant products of Lorentzian para-Sasakian manifolds have been considered and an important inequality for second fundamental form is proved.

References

  • Adati T., Matsumoto, K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Mathematics, 13(1997), 25–32.
  • Alegre, P., Semi-invariant submanifolds of Lorentzian Sasakian manifolds, Demonstratio Mathematica, XLIV(2)(2011), 391–406.
  • Aqeel, A.A., De, U.C., Ghosh, G.C., On Lorentzian para-Sasakian manifolds, Kuwait Journal of Science and Engineering, 31(2)(2004), 1–13.
  • De, U.C., Matsumoto, K., Shaikh, A.A., On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario matematico di Messina, 3(1999), 149–156.
  • Devi, M.S., Sangi, B., Tluangi, H., Siami, K., Khawlhring, L. et al., Some curvature properties on Lorentzian para-sasakian manifolds, Advances and Applications in Mathematical Sciences, 21(6)(2022), 3191–31200.
  • Duggal, K.L., Space time manifold and contact Manifolds, International Journal of Mathematics and Mathematical Sciences, 13(1990), 545–554.
  • Ikawa, T., Erdogan, M., Sasakian manifolds with Lorentzian metric, Kyungpook Mathematical Journal, 35(1996), 517–526
  • Ikawa, T., Spacelike maximal surfaces with constant scalar normal curvature in a normal contact Lorentzian manifold, Bulletin of the Malaysian Mathematical Sciences Society, 21(1998), 31–36.
  • Laha, B., D-homothodics deformations of Lorentzian para Sasakian manifolds, International Journal of Mathematical Combinatorics, 2(2019), 34–42.
  • Matsumoto, K., On Lorentzian para-contact manifolds, Bulletin of the Yamagata University. Natural Science, 12(1989), 151–156.
  • Mihai I., Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publication, Singapore, (1992), 155–169.
  • Mihai, I., De, U.C., Shaikh, A.A., On Lorentzian para-Sasakian manifolds, The Korean Journal of Mathematics, 6(1999), 1–13.
  • Pandey, S., Singh, A., Certain results of Ricci soliton on 3-dimensional Lorentzian para α-Sasakian manifolds, International Journal of Maps in Mathematics, 5(2)(2022), 139–153.
  • Sato, I., On a structure similar to the almost contact structure Tensor (N.S.), 30(1976), 219–224.
  • Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Mathematical Journal, 21(2)(1969), 271–290.
  • Tanno, S., Sasakian manifolds with constant ’φ-holomorphic sectional curvature, Tohoku Mathematical Journal, 21(2)(1969), 501–507.
  • Venkatesha, V., Basavarajappa, S., Invariant submanifolds of LP-Sasakian manifolds, Journal of Mathematics, 6(1)(2020), 16–26.
Year 2023, Volume: 15 Issue: 2, 464 - 469, 31.12.2023
https://doi.org/10.47000/tjmcs.1322351

Abstract

References

  • Adati T., Matsumoto, K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Mathematics, 13(1997), 25–32.
  • Alegre, P., Semi-invariant submanifolds of Lorentzian Sasakian manifolds, Demonstratio Mathematica, XLIV(2)(2011), 391–406.
  • Aqeel, A.A., De, U.C., Ghosh, G.C., On Lorentzian para-Sasakian manifolds, Kuwait Journal of Science and Engineering, 31(2)(2004), 1–13.
  • De, U.C., Matsumoto, K., Shaikh, A.A., On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario matematico di Messina, 3(1999), 149–156.
  • Devi, M.S., Sangi, B., Tluangi, H., Siami, K., Khawlhring, L. et al., Some curvature properties on Lorentzian para-sasakian manifolds, Advances and Applications in Mathematical Sciences, 21(6)(2022), 3191–31200.
  • Duggal, K.L., Space time manifold and contact Manifolds, International Journal of Mathematics and Mathematical Sciences, 13(1990), 545–554.
  • Ikawa, T., Erdogan, M., Sasakian manifolds with Lorentzian metric, Kyungpook Mathematical Journal, 35(1996), 517–526
  • Ikawa, T., Spacelike maximal surfaces with constant scalar normal curvature in a normal contact Lorentzian manifold, Bulletin of the Malaysian Mathematical Sciences Society, 21(1998), 31–36.
  • Laha, B., D-homothodics deformations of Lorentzian para Sasakian manifolds, International Journal of Mathematical Combinatorics, 2(2019), 34–42.
  • Matsumoto, K., On Lorentzian para-contact manifolds, Bulletin of the Yamagata University. Natural Science, 12(1989), 151–156.
  • Mihai I., Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publication, Singapore, (1992), 155–169.
  • Mihai, I., De, U.C., Shaikh, A.A., On Lorentzian para-Sasakian manifolds, The Korean Journal of Mathematics, 6(1999), 1–13.
  • Pandey, S., Singh, A., Certain results of Ricci soliton on 3-dimensional Lorentzian para α-Sasakian manifolds, International Journal of Maps in Mathematics, 5(2)(2022), 139–153.
  • Sato, I., On a structure similar to the almost contact structure Tensor (N.S.), 30(1976), 219–224.
  • Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Mathematical Journal, 21(2)(1969), 271–290.
  • Tanno, S., Sasakian manifolds with constant ’φ-holomorphic sectional curvature, Tohoku Mathematical Journal, 21(2)(1969), 501–507.
  • Venkatesha, V., Basavarajappa, S., Invariant submanifolds of LP-Sasakian manifolds, Journal of Mathematics, 6(1)(2020), 16–26.
There are 17 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other), Algebraic and Differential Geometry
Journal Section Articles
Authors

Ramazan Sarı 0000-0002-4618-8243

İnan Ünal 0000-0003-1318-9685

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Sarı, R., & Ünal, İ. (2023). On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds. Turkish Journal of Mathematics and Computer Science, 15(2), 464-469. https://doi.org/10.47000/tjmcs.1322351
AMA Sarı R, Ünal İ. On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds. TJMCS. December 2023;15(2):464-469. doi:10.47000/tjmcs.1322351
Chicago Sarı, Ramazan, and İnan Ünal. “On Curvatures of Semi-Invariant Submanifolds of Lorentzian Para-Sasakian Manifolds”. Turkish Journal of Mathematics and Computer Science 15, no. 2 (December 2023): 464-69. https://doi.org/10.47000/tjmcs.1322351.
EndNote Sarı R, Ünal İ (December 1, 2023) On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds. Turkish Journal of Mathematics and Computer Science 15 2 464–469.
IEEE R. Sarı and İ. Ünal, “On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds”, TJMCS, vol. 15, no. 2, pp. 464–469, 2023, doi: 10.47000/tjmcs.1322351.
ISNAD Sarı, Ramazan - Ünal, İnan. “On Curvatures of Semi-Invariant Submanifolds of Lorentzian Para-Sasakian Manifolds”. Turkish Journal of Mathematics and Computer Science 15/2 (December 2023), 464-469. https://doi.org/10.47000/tjmcs.1322351.
JAMA Sarı R, Ünal İ. On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds. TJMCS. 2023;15:464–469.
MLA Sarı, Ramazan and İnan Ünal. “On Curvatures of Semi-Invariant Submanifolds of Lorentzian Para-Sasakian Manifolds”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 2, 2023, pp. 464-9, doi:10.47000/tjmcs.1322351.
Vancouver Sarı R, Ünal İ. On Curvatures of Semi-invariant Submanifolds of Lorentzian Para-Sasakian Manifolds. TJMCS. 2023;15(2):464-9.