Research Article
BibTex RIS Cite

Integral Circulant Graphs and So’s Conjecture

Year 2024, Volume: 16 Issue: 1, 169 - 176, 30.06.2024
https://doi.org/10.47000/tjmcs.1461910

Abstract

An integral circulant graph is a circulant graph whose adjacency matrix has only integer eigenvalues. It was conjectured by W. So that there are exactly $2^{\tau(n) - 1}$ non-isospectral integral circulant graphs of order $n$, where $\tau ( n )$ is the number of divisors of $n$. However, the conjecture remains unproven. In this paper, we present the fundamental concepts and results on the conjecture. We obtain the relation between two characterizations of integral circulant graphs given by W. So and by W. Klotz and T. Sander . Finally,we calculate the eigenvalues of the integral circulant graph $G$ if $S(G) = G_{n}(d)$ for any $d \in D $. Here $G_{n}(d)$ is the set of all integers less than $n$ that have the same greatest common divisor $d$ with $n$.

References

  • Biggs, N., Algebraic Graph Theory, Cambridge University Press, London, 1993.
  • Klotz, W., Sander, T., Some properties of unitary Cayley graphs, The Electronic Journal of Combinatorics, (2007).
  • Mönius, K., So, W., How many non-isospectral integral circulant graphs are there?, Australasian Journal of Combinatorics, 86(2023), 320– 335.
  • Sander, J.W., Sander T., On So’s conjecture for integral circulant graphs, Applicable Analysis and Discrete Mathematics, (2015), 59–72.
  • So, W., Integral circulant graphs, Discrete Mathematics, 306(2006), 153–158.
Year 2024, Volume: 16 Issue: 1, 169 - 176, 30.06.2024
https://doi.org/10.47000/tjmcs.1461910

Abstract

References

  • Biggs, N., Algebraic Graph Theory, Cambridge University Press, London, 1993.
  • Klotz, W., Sander, T., Some properties of unitary Cayley graphs, The Electronic Journal of Combinatorics, (2007).
  • Mönius, K., So, W., How many non-isospectral integral circulant graphs are there?, Australasian Journal of Combinatorics, 86(2023), 320– 335.
  • Sander, J.W., Sander T., On So’s conjecture for integral circulant graphs, Applicable Analysis and Discrete Mathematics, (2015), 59–72.
  • So, W., Integral circulant graphs, Discrete Mathematics, 306(2006), 153–158.
There are 5 citations in total.

Details

Primary Language English
Subjects Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Articles
Authors

Ercan Altınışık 0000-0002-0476-9429

Sümeyye Büşra Aydın 0000-0003-3604-2862

Publication Date June 30, 2024
Submission Date March 30, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Altınışık, E., & Aydın, S. B. (2024). Integral Circulant Graphs and So’s Conjecture. Turkish Journal of Mathematics and Computer Science, 16(1), 169-176. https://doi.org/10.47000/tjmcs.1461910
AMA Altınışık E, Aydın SB. Integral Circulant Graphs and So’s Conjecture. TJMCS. June 2024;16(1):169-176. doi:10.47000/tjmcs.1461910
Chicago Altınışık, Ercan, and Sümeyye Büşra Aydın. “Integral Circulant Graphs and So’s Conjecture”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 169-76. https://doi.org/10.47000/tjmcs.1461910.
EndNote Altınışık E, Aydın SB (June 1, 2024) Integral Circulant Graphs and So’s Conjecture. Turkish Journal of Mathematics and Computer Science 16 1 169–176.
IEEE E. Altınışık and S. B. Aydın, “Integral Circulant Graphs and So’s Conjecture”, TJMCS, vol. 16, no. 1, pp. 169–176, 2024, doi: 10.47000/tjmcs.1461910.
ISNAD Altınışık, Ercan - Aydın, Sümeyye Büşra. “Integral Circulant Graphs and So’s Conjecture”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 169-176. https://doi.org/10.47000/tjmcs.1461910.
JAMA Altınışık E, Aydın SB. Integral Circulant Graphs and So’s Conjecture. TJMCS. 2024;16:169–176.
MLA Altınışık, Ercan and Sümeyye Büşra Aydın. “Integral Circulant Graphs and So’s Conjecture”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 169-76, doi:10.47000/tjmcs.1461910.
Vancouver Altınışık E, Aydın SB. Integral Circulant Graphs and So’s Conjecture. TJMCS. 2024;16(1):169-76.