Research Article
BibTex RIS Cite

$D_{i}-$Darboux Slant Helices on Surface

Year 2024, Volume: 16 Issue: 2, 386 - 399, 31.12.2024
https://doi.org/10.47000/tjmcs.1310722

Abstract

In this study, we consider $D_{i}$-Darboux slant helices which are new surface curves on an oriented surface. We give some characterizations for such curves according to the Darboux frame, OD-frame, ND-frame, RD-frame, and obtain axes of the $D_{i}$-Darboux slant helices. Moreover, the position vectors of the $D_{i}$-Darboux slant helices are obtained.

References

  • Ali, A.T., Position vectors of slant helices in Euclidean space E3, J. Egyptian Math. Soc., 20(2012) 1–6.
  • Alkan, A., Kocayiğit, H., Ağırman Aydın, T., New moving frames for the curves lying on a surface, Sigma Journal of Engineering and Natural Sciences, 42(4)(2024), 2023–2029.
  • Babaarslan, M., Tandogan, Y.A., Yayli, Y., A note on Bertrand curves and constant slope surfaces according to Darboux frame, Journal of Advanced Mathematical Studies, 5(1)(2012), 87–97.
  • Babaarslan, M., Yayli, Y., On helices and Bertrand curves in Euclidean 3-space, Mathematical and Computational Applications, 18(1)(2013), 1–11.
  • Barros, M., General helices and a theorem of Lancret, Proc Amer Math Soc., 125(5)(1997), 1503–1509.
  • Doğan, F., Yaylı Y., On isophote curves and their characterizations, Turk J. Math., 39(2015), 650–664.
  • Hananoi, S., Ito, N., Izumiya, S., Spherical Darboux images of curves on surfaces, Beitr Algebra Geom., 56(2015), 575–585.
  • Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk J. Math., 28(2004), 153–163.
  • Kula, L., Yaylı, Y., On slant helix and its spherical indicatrix, Applied Mathematics and Computation, 169(1)(2005), 600–607.
  • Macit, N., Düldül, M., Relatively normal-slant helices lying on a surface and their characterizations, Hacettepe Journal of Mathematics and Statistics, 46(3)(2017), 397–408.
  • Önder, M., Helices associated to helical curves, relatively normal-slant helices and isophote curves, arXiv preprint arXiv:2201.09684., (2022).
  • Puig-Pey, J., G´alvez, A., Iglesias, A., Helical curves on surfaces for computer-aided geometric design and manufacturing, in: Computational Science and Its Applications-ICCSA Part II, 771-778. in: Lecture Notes in Comput Sci Vol. 3044, Springer, Berlin, (2004).
  • Zıplar, E., Şenol, A., Yaylı, Y., On Darboux helices in Euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(3)(2012), 73–80.
Year 2024, Volume: 16 Issue: 2, 386 - 399, 31.12.2024
https://doi.org/10.47000/tjmcs.1310722

Abstract

References

  • Ali, A.T., Position vectors of slant helices in Euclidean space E3, J. Egyptian Math. Soc., 20(2012) 1–6.
  • Alkan, A., Kocayiğit, H., Ağırman Aydın, T., New moving frames for the curves lying on a surface, Sigma Journal of Engineering and Natural Sciences, 42(4)(2024), 2023–2029.
  • Babaarslan, M., Tandogan, Y.A., Yayli, Y., A note on Bertrand curves and constant slope surfaces according to Darboux frame, Journal of Advanced Mathematical Studies, 5(1)(2012), 87–97.
  • Babaarslan, M., Yayli, Y., On helices and Bertrand curves in Euclidean 3-space, Mathematical and Computational Applications, 18(1)(2013), 1–11.
  • Barros, M., General helices and a theorem of Lancret, Proc Amer Math Soc., 125(5)(1997), 1503–1509.
  • Doğan, F., Yaylı Y., On isophote curves and their characterizations, Turk J. Math., 39(2015), 650–664.
  • Hananoi, S., Ito, N., Izumiya, S., Spherical Darboux images of curves on surfaces, Beitr Algebra Geom., 56(2015), 575–585.
  • Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk J. Math., 28(2004), 153–163.
  • Kula, L., Yaylı, Y., On slant helix and its spherical indicatrix, Applied Mathematics and Computation, 169(1)(2005), 600–607.
  • Macit, N., Düldül, M., Relatively normal-slant helices lying on a surface and their characterizations, Hacettepe Journal of Mathematics and Statistics, 46(3)(2017), 397–408.
  • Önder, M., Helices associated to helical curves, relatively normal-slant helices and isophote curves, arXiv preprint arXiv:2201.09684., (2022).
  • Puig-Pey, J., G´alvez, A., Iglesias, A., Helical curves on surfaces for computer-aided geometric design and manufacturing, in: Computational Science and Its Applications-ICCSA Part II, 771-778. in: Lecture Notes in Comput Sci Vol. 3044, Springer, Berlin, (2004).
  • Zıplar, E., Şenol, A., Yaylı, Y., On Darboux helices in Euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(3)(2012), 73–80.
There are 13 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Articles
Authors

Akın Alkan 0000-0002-8179-9525

Hüseyin Kocayiğit 0000-0001-6503-8243

Tuba Ağırman Aydın 0000-0001-8034-0723

Publication Date December 31, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Alkan, A., Kocayiğit, H., & Ağırman Aydın, T. (2024). $D_{i}-$Darboux Slant Helices on Surface. Turkish Journal of Mathematics and Computer Science, 16(2), 386-399. https://doi.org/10.47000/tjmcs.1310722
AMA Alkan A, Kocayiğit H, Ağırman Aydın T. $D_{i}-$Darboux Slant Helices on Surface. TJMCS. December 2024;16(2):386-399. doi:10.47000/tjmcs.1310722
Chicago Alkan, Akın, Hüseyin Kocayiğit, and Tuba Ağırman Aydın. “$D_{i}-$Darboux Slant Helices on Surface”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 386-99. https://doi.org/10.47000/tjmcs.1310722.
EndNote Alkan A, Kocayiğit H, Ağırman Aydın T (December 1, 2024) $D_{i}-$Darboux Slant Helices on Surface. Turkish Journal of Mathematics and Computer Science 16 2 386–399.
IEEE A. Alkan, H. Kocayiğit, and T. Ağırman Aydın, “$D_{i}-$Darboux Slant Helices on Surface”, TJMCS, vol. 16, no. 2, pp. 386–399, 2024, doi: 10.47000/tjmcs.1310722.
ISNAD Alkan, Akın et al. “$D_{i}-$Darboux Slant Helices on Surface”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 386-399. https://doi.org/10.47000/tjmcs.1310722.
JAMA Alkan A, Kocayiğit H, Ağırman Aydın T. $D_{i}-$Darboux Slant Helices on Surface. TJMCS. 2024;16:386–399.
MLA Alkan, Akın et al. “$D_{i}-$Darboux Slant Helices on Surface”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 386-99, doi:10.47000/tjmcs.1310722.
Vancouver Alkan A, Kocayiğit H, Ağırman Aydın T. $D_{i}-$Darboux Slant Helices on Surface. TJMCS. 2024;16(2):386-99.