Research Article
BibTex RIS Cite

On the Continuous Composition of Integrable Functions

Year 2024, Volume: 16 Issue: 2, 354 - 357, 31.12.2024
https://doi.org/10.47000/tjmcs.1319453

Abstract

We prove if $\alpha$ be a function of bounded variation on $[a,b]$, $[m_{i}, M_{i}] \subset \mathbb{R}$ be a closed interval for $1\leq i \leq n$, $f_{i}:[a,b]\to [m_{i}, M_{i}]$ be Riemann-Stieltjes integrable with respect to $\alpha$, and $G: \Pi_{i=1}^{i=n} [m_{i},M_{i}] \to \mathbb{R}$ be continuous, then $H=G\circ(f_{1}, \dots ,f_{n})$ is Riemann-Stieltjes integrable with respect to $\alpha$. Some other consequences, applications and counterexamples are also provided.

Supporting Institution

This article is not supported by any institution.

Project Number

This article is not a result of any project in any way.

References

  • Apostol, T.M., Mathematical Analysis, 2nd edition, Addison-Wesley, Massachusetts, USA, 1975.
  • Barnett, N.S., Dragomir, S.S., The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral, Applied Mathematics Letters, 22(2009), 58–63.
  • Bartle, R.G., The Elements of Real Analysis, 2nd ed., John-Wiely & sons, Inc., New York, 1991.
  • Bashirov, A., Mathematical Analysis Fundamentals, 1st ed., Elsevier, London, 2014.
  • Cerone, P., Dragomir, S.S., Bounding the Cˇebysˇev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications, Computers and Mathematics with Applications, 58(2009), 1247–1252.
  • Chen, Z., Leskel¨a, L., Viitasaari, l., Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes, Stochastic Process and their Applications, 129(2019), 2723–2725.
  • Dragomir, S.S., Harley, C., Momoniat, E., Error bounds in approximating the Riemann-Stieltjes integral of Cn+1-class integrands and nonsmooth integrators, Applied Mathematics and Computation, 249(2014), 237–246.
  • Leffler, K., The Riemann-Stieltjes Integral and Some Applications in Complex Analysis and Probability Theory, PhD, Ume˙a University, Ume˙a, Sweden, 2014.
  • Parsian, A., On the Riemann-Stieltjes integral, Mathematics Interdisciplinary Research, 7(2022), 131–138.
  • Rezounenko, A.V., Nonlocal PDEs with a state-dependent delay term presented by Stieltjes integral, Comptes Rendus Mathematique, 349(3-4)(2011), 179–183.
  • Ross, K .A., Another approach to Riemann-Stieltjes integrals, The American Mathematical Monthly, 87(1980), 660–662.
  • Rudin, W., Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill Book Company, Inc., New York, 1976.
  • Ter Horst, H.J., On Stieltjes integration in Euclidean space, Journal of Mathematical Analysis and Applications, 114(1986), 57–74.
  • Ter Horst, H.J., Riemann-Stieltjes and Lebesgue-Stieltjes integrability, The American Mathematical Monthly, 91(1984), 551–559.
  • Yaskov, P., On pathwise Riemann-Stieltjes integrals, Statistics & Probability Letters, 150(2019), 101–107.
Year 2024, Volume: 16 Issue: 2, 354 - 357, 31.12.2024
https://doi.org/10.47000/tjmcs.1319453

Abstract

Project Number

This article is not a result of any project in any way.

References

  • Apostol, T.M., Mathematical Analysis, 2nd edition, Addison-Wesley, Massachusetts, USA, 1975.
  • Barnett, N.S., Dragomir, S.S., The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral, Applied Mathematics Letters, 22(2009), 58–63.
  • Bartle, R.G., The Elements of Real Analysis, 2nd ed., John-Wiely & sons, Inc., New York, 1991.
  • Bashirov, A., Mathematical Analysis Fundamentals, 1st ed., Elsevier, London, 2014.
  • Cerone, P., Dragomir, S.S., Bounding the Cˇebysˇev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications, Computers and Mathematics with Applications, 58(2009), 1247–1252.
  • Chen, Z., Leskel¨a, L., Viitasaari, l., Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes, Stochastic Process and their Applications, 129(2019), 2723–2725.
  • Dragomir, S.S., Harley, C., Momoniat, E., Error bounds in approximating the Riemann-Stieltjes integral of Cn+1-class integrands and nonsmooth integrators, Applied Mathematics and Computation, 249(2014), 237–246.
  • Leffler, K., The Riemann-Stieltjes Integral and Some Applications in Complex Analysis and Probability Theory, PhD, Ume˙a University, Ume˙a, Sweden, 2014.
  • Parsian, A., On the Riemann-Stieltjes integral, Mathematics Interdisciplinary Research, 7(2022), 131–138.
  • Rezounenko, A.V., Nonlocal PDEs with a state-dependent delay term presented by Stieltjes integral, Comptes Rendus Mathematique, 349(3-4)(2011), 179–183.
  • Ross, K .A., Another approach to Riemann-Stieltjes integrals, The American Mathematical Monthly, 87(1980), 660–662.
  • Rudin, W., Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill Book Company, Inc., New York, 1976.
  • Ter Horst, H.J., On Stieltjes integration in Euclidean space, Journal of Mathematical Analysis and Applications, 114(1986), 57–74.
  • Ter Horst, H.J., Riemann-Stieltjes and Lebesgue-Stieltjes integrability, The American Mathematical Monthly, 91(1984), 551–559.
  • Yaskov, P., On pathwise Riemann-Stieltjes integrals, Statistics & Probability Letters, 150(2019), 101–107.
There are 15 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Ali Parsian 0000-0001-6323-5956

Project Number This article is not a result of any project in any way.
Publication Date December 31, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Parsian, A. (2024). On the Continuous Composition of Integrable Functions. Turkish Journal of Mathematics and Computer Science, 16(2), 354-357. https://doi.org/10.47000/tjmcs.1319453
AMA Parsian A. On the Continuous Composition of Integrable Functions. TJMCS. December 2024;16(2):354-357. doi:10.47000/tjmcs.1319453
Chicago Parsian, Ali. “On the Continuous Composition of Integrable Functions”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 354-57. https://doi.org/10.47000/tjmcs.1319453.
EndNote Parsian A (December 1, 2024) On the Continuous Composition of Integrable Functions. Turkish Journal of Mathematics and Computer Science 16 2 354–357.
IEEE A. Parsian, “On the Continuous Composition of Integrable Functions”, TJMCS, vol. 16, no. 2, pp. 354–357, 2024, doi: 10.47000/tjmcs.1319453.
ISNAD Parsian, Ali. “On the Continuous Composition of Integrable Functions”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 354-357. https://doi.org/10.47000/tjmcs.1319453.
JAMA Parsian A. On the Continuous Composition of Integrable Functions. TJMCS. 2024;16:354–357.
MLA Parsian, Ali. “On the Continuous Composition of Integrable Functions”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 354-7, doi:10.47000/tjmcs.1319453.
Vancouver Parsian A. On the Continuous Composition of Integrable Functions. TJMCS. 2024;16(2):354-7.