Research Article
BibTex RIS Cite

A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods

Year 2024, Volume: 16 Issue: 2, 358 - 366, 31.12.2024

Abstract

In this paper, we focus on two summability methods and investigate some applications of them for the Cheney-Sharma operators. We obtain approximation properties of the Cheney-Sharma operators via power series statistical convergence. We also analyze the convergence rates employing both the modulus of continuity and elements of the Lipschitz class. Additionally, we define r-th order generalization of the these operators which is linear but don't satisfy the positivity property and investigate approximation properties of these operators, via A-statistical convergence. We support our results with an example and a graph.

References

  • Agratini, O., Statistical convergence of non-positive approximation process, Chaos Solitions Fractals, 44(11)(2011), 977–981.
  • Altomare, F., Campiti, M., Korovkin-type Approximaton Theory and Its Applications, Walter de Gruyter, Berlin-New York, 1994.
  • Başcanbaz-Tunca, G., Erençin, A., Taşdelen, F., Some properties of Bernstein type Cheney and Sharma operators, Gen. Math., 24(1-2)(2016), 17–25.
  • Boos, J., Classical and Modern Methods in Summability, Oxford University Press, Oxford, 2000.
  • Bostancı, T., Başcanbaz-Tunca, G., Stancu type extension of Cheney and Sharma operators, J. Numer. Anal. Approx. Theory, 47(2)(2018), 124–134.
  • Cheney, E.W., Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ.Parma, 2(5)(1964), 77–84.
  • Duman O., Orhan, C., An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 69(1-2)(2006), 33–46.
  • Duman, O., A Korovkin type approximation theorems via I-convergence, Czechoslovak Math. J., 57(132)(2007), 367–375.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241–244.
  • Gadjiev, A.D., Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(2002), 129–138.
  • Kirov, G.H., Popova, L. A generalization of the linear positive operators, Math. Balkanica, 7(1993), 149–162.
  • Olgun, A., İnce, H.G., Taşdelen, F., Kantorovich-type generalization of Meyer -Könıg and Zeller operators via generating functions, An. S¸ t. Univ. Ovidius Constanta, 21(3)(2013), 209–221.
  • Örkçü, M., Approximation properties of Stancu-type Meyer -Ko¨nig and Zeller Operators, Hacet. J. Math. Stat., 42(2)(2013), 139–148.
  • Özarslan, M.A., Duman, O., Doğru, O., Rates of A-statistical convergence of approximating operators, Calcolo, 42(2005), 93–104.
  • Özarslan, M.A., Duman, O. Srivastava, H.M., Statistical approximation results for Kantorovich-type operators involving some special polynomials, Math. Comput Modelling, 48(2008), 388–401.
  • Prakash, C., Verma, D.K., Deo, N., Approximation by Durrmeyer variant of Cheney-Sharma Chlodovsky operators, Mathematical Foundations of Computing, 6(3)(2023), 535–545.
  • Sakaoglu, İ., Ünver, M., Statistical approximation for multivariable integrable functions, Miskolc Math. Notes, 13(2012), 485–491.
  • Salat, T., On statistically convergent sequences of real numbers, Mat.Slovaca., 30(2)(1980), 139–150.
  • Söylemez, D., Ünver, M. Korovkin type theorems for Cheney–Sharma Operators via summability methods, Results Math., 73(2017), 1601–1612.
  • Söylemez, D., Taşdelen. F., On Cheney-Sharma Chlodovsky operators, Bulletin of Mathematical Analysis & Applications, 11(1)(2019).
  • Söylemez D., Taşdelen, F., Approximation by Cheney-Sharma Chlodovsky operators, Hacettepe J. Math. Stat., 49(2020), 510–522.
  • Söylemez, D., Ünver, M., Rates of power series statistical convergence of positive linear operators and power series statistical convergence of-Meyer–König and Zeller Operators, Lobachevskii J. Math., 42(2)(2021), 426–434.
  • Srivastava, H.M., Ansari, K.J., Özger, F., Ödemis¸ Özger, Z., A link between approximation theory and summability methods via fourdimensional infinite matrices, Mathematics, 9(16)(2021), 1895.
  • Stancu, D.D., Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Num´er. Th´eor. Approx., 26(1-2)(1997), 221–227.
  • Stancu, D.D., Stoica, E.I., On the use Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babes¸ Bolyai Math., 54(4)(2009), 167–182.
  • Taş, E., Yurdakadim, T., Approximation to derivatives of functions by linear operators acting on weighted spaces by power series method, Computational analysis, Springer Proceedings in Mathematics and Statistics, 155(2016), 363–372.
  • Taş, E., Yurdakadim, T., Atlıhan, Ö .G., Korovkin type approximation theorems in weighted spaces via power series method, Oper. Matrices, 12(2)(2018), 529–535.
  • Uluçay, H., Ünver,M., Söylemez, D., Some Korovkin type approximation applications of power series methods, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117(1)(2023), 1–24.
  • Ünver, M., Khan, M.K., Orhan, C, A-distributional summability in topological spaces, Positivity, 18(1)(2014), 131–145.
  • Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Journal Numerical Functional Analysis and Optimization, 40(5)(2019), 535–547.
Year 2024, Volume: 16 Issue: 2, 358 - 366, 31.12.2024

Abstract

References

  • Agratini, O., Statistical convergence of non-positive approximation process, Chaos Solitions Fractals, 44(11)(2011), 977–981.
  • Altomare, F., Campiti, M., Korovkin-type Approximaton Theory and Its Applications, Walter de Gruyter, Berlin-New York, 1994.
  • Başcanbaz-Tunca, G., Erençin, A., Taşdelen, F., Some properties of Bernstein type Cheney and Sharma operators, Gen. Math., 24(1-2)(2016), 17–25.
  • Boos, J., Classical and Modern Methods in Summability, Oxford University Press, Oxford, 2000.
  • Bostancı, T., Başcanbaz-Tunca, G., Stancu type extension of Cheney and Sharma operators, J. Numer. Anal. Approx. Theory, 47(2)(2018), 124–134.
  • Cheney, E.W., Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ.Parma, 2(5)(1964), 77–84.
  • Duman O., Orhan, C., An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen, 69(1-2)(2006), 33–46.
  • Duman, O., A Korovkin type approximation theorems via I-convergence, Czechoslovak Math. J., 57(132)(2007), 367–375.
  • Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241–244.
  • Gadjiev, A.D., Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32(2002), 129–138.
  • Kirov, G.H., Popova, L. A generalization of the linear positive operators, Math. Balkanica, 7(1993), 149–162.
  • Olgun, A., İnce, H.G., Taşdelen, F., Kantorovich-type generalization of Meyer -Könıg and Zeller operators via generating functions, An. S¸ t. Univ. Ovidius Constanta, 21(3)(2013), 209–221.
  • Örkçü, M., Approximation properties of Stancu-type Meyer -Ko¨nig and Zeller Operators, Hacet. J. Math. Stat., 42(2)(2013), 139–148.
  • Özarslan, M.A., Duman, O., Doğru, O., Rates of A-statistical convergence of approximating operators, Calcolo, 42(2005), 93–104.
  • Özarslan, M.A., Duman, O. Srivastava, H.M., Statistical approximation results for Kantorovich-type operators involving some special polynomials, Math. Comput Modelling, 48(2008), 388–401.
  • Prakash, C., Verma, D.K., Deo, N., Approximation by Durrmeyer variant of Cheney-Sharma Chlodovsky operators, Mathematical Foundations of Computing, 6(3)(2023), 535–545.
  • Sakaoglu, İ., Ünver, M., Statistical approximation for multivariable integrable functions, Miskolc Math. Notes, 13(2012), 485–491.
  • Salat, T., On statistically convergent sequences of real numbers, Mat.Slovaca., 30(2)(1980), 139–150.
  • Söylemez, D., Ünver, M. Korovkin type theorems for Cheney–Sharma Operators via summability methods, Results Math., 73(2017), 1601–1612.
  • Söylemez, D., Taşdelen. F., On Cheney-Sharma Chlodovsky operators, Bulletin of Mathematical Analysis & Applications, 11(1)(2019).
  • Söylemez D., Taşdelen, F., Approximation by Cheney-Sharma Chlodovsky operators, Hacettepe J. Math. Stat., 49(2020), 510–522.
  • Söylemez, D., Ünver, M., Rates of power series statistical convergence of positive linear operators and power series statistical convergence of-Meyer–König and Zeller Operators, Lobachevskii J. Math., 42(2)(2021), 426–434.
  • Srivastava, H.M., Ansari, K.J., Özger, F., Ödemis¸ Özger, Z., A link between approximation theory and summability methods via fourdimensional infinite matrices, Mathematics, 9(16)(2021), 1895.
  • Stancu, D.D., Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Num´er. Th´eor. Approx., 26(1-2)(1997), 221–227.
  • Stancu, D.D., Stoica, E.I., On the use Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babes¸ Bolyai Math., 54(4)(2009), 167–182.
  • Taş, E., Yurdakadim, T., Approximation to derivatives of functions by linear operators acting on weighted spaces by power series method, Computational analysis, Springer Proceedings in Mathematics and Statistics, 155(2016), 363–372.
  • Taş, E., Yurdakadim, T., Atlıhan, Ö .G., Korovkin type approximation theorems in weighted spaces via power series method, Oper. Matrices, 12(2)(2018), 529–535.
  • Uluçay, H., Ünver,M., Söylemez, D., Some Korovkin type approximation applications of power series methods, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117(1)(2023), 1–24.
  • Ünver, M., Khan, M.K., Orhan, C, A-distributional summability in topological spaces, Positivity, 18(1)(2014), 131–145.
  • Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Journal Numerical Functional Analysis and Optimization, 40(5)(2019), 535–547.
There are 30 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Dilek Soylemez Ozden 0000-0002-6802-8064

Emre Güven 0000-0002-6000-8077

Publication Date December 31, 2024
Submission Date December 26, 2023
Acceptance Date July 17, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Soylemez Ozden, D., & Güven, E. (2024). A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods. Turkish Journal of Mathematics and Computer Science, 16(2), 358-366. https://doi.org/10.47000/tjmcs.1410387
AMA Soylemez Ozden D, Güven E. A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods. TJMCS. December 2024;16(2):358-366. doi:10.47000/tjmcs.1410387
Chicago Soylemez Ozden, Dilek, and Emre Güven. “A Note on Approximation Properties of Bernstein-Type Operators via Some Summability Methods”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 358-66. https://doi.org/10.47000/tjmcs.1410387.
EndNote Soylemez Ozden D, Güven E (December 1, 2024) A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods. Turkish Journal of Mathematics and Computer Science 16 2 358–366.
IEEE D. Soylemez Ozden and E. Güven, “A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods”, TJMCS, vol. 16, no. 2, pp. 358–366, 2024, doi: 10.47000/tjmcs.1410387.
ISNAD Soylemez Ozden, Dilek - Güven, Emre. “A Note on Approximation Properties of Bernstein-Type Operators via Some Summability Methods”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 358-366. https://doi.org/10.47000/tjmcs.1410387.
JAMA Soylemez Ozden D, Güven E. A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods. TJMCS. 2024;16:358–366.
MLA Soylemez Ozden, Dilek and Emre Güven. “A Note on Approximation Properties of Bernstein-Type Operators via Some Summability Methods”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 358-66, doi:10.47000/tjmcs.1410387.
Vancouver Soylemez Ozden D, Güven E. A Note on Approximation Properties of Bernstein-type Operators via Some Summability Methods. TJMCS. 2024;16(2):358-66.