Research Article
BibTex RIS Cite

On the Generalized Francois Numbers

Year 2024, Volume: 16 Issue: 2, 346 - 353, 31.12.2024
https://doi.org/10.47000/tjmcs.1464650

Abstract

This study introduces the generalized Francois numbers and investigates their some properties. In addition, we give the basic formulas such as Binet's formula, sums formulas. Also, we provide some identities among the Fibonacci sequence, the Lucas sequence, and the generalized Francois sequence.

References

  • Alp, Y., Kocer, E.G., Some properties of Lenardo numbers, Konuralp J. Math., 9(1)(2021), 183–189.
  • Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenian, 89(1) (2019), 75–86.
  • Diskaya, O., Menken, H., Catarino, P., On the hyperbolic Leonardo and hyperbolic Francois quaternions, Journal of New Theory, 42(2023)(2023), 74–85.
  • Gökbaş, H., A new family of number sequences: Leonardo-Alwyn numbers, Armenian Journal of Mathematics, 15(6)(2023), 1–13.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley&Sons, 2001.
  • Kuhapatanakul, K., Chobsorn, J., On the generalized Leonardo numbers, Integers, 22(2022), A48.
  • Kumari, M., Prasad, K., Mahato, H., Catarino, P.M.M., On the generalized Leonardo quaternions and associated spinors, Kragujevac Journal of Mathematics, 50(3)(2026), 425–438.
  • Cerda-Morales, G., Introduction to generalized Leonardo-Alwyn hybrid numbers, (2024), arXiv:2405.13074.
  • Saçlı, G.Y., Yüce, S., A note on hyper-dual numbers with the Leonardo-Alwyn sequence, Turkish Journal of Mathematics and Computer Science, 16(1)(2024), 154–161.
  • Savin, D., Tan, E., On Companion sequences associated with Leonardo quaternions: Applications over finite fields, (2024), arXiv:2403.01592.
  • Shannon, A.G., A note on generalized Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 25(3)(2019), 97–101.
  • Shattuck, M., Combinatorial proofs of identities for the generalized Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 28(24)(2022), 778–790.
  • Sloane, N.J.A., The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
  • Vajda, S., Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, Halsted Press, 1989.
  • Yilmaz, Ç.Z., Saçlı, G.Y., On dual quaternions with k-generalized Leonardo components, Journal of New Theory, 44(2023), 31–42.
Year 2024, Volume: 16 Issue: 2, 346 - 353, 31.12.2024
https://doi.org/10.47000/tjmcs.1464650

Abstract

References

  • Alp, Y., Kocer, E.G., Some properties of Lenardo numbers, Konuralp J. Math., 9(1)(2021), 183–189.
  • Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenian, 89(1) (2019), 75–86.
  • Diskaya, O., Menken, H., Catarino, P., On the hyperbolic Leonardo and hyperbolic Francois quaternions, Journal of New Theory, 42(2023)(2023), 74–85.
  • Gökbaş, H., A new family of number sequences: Leonardo-Alwyn numbers, Armenian Journal of Mathematics, 15(6)(2023), 1–13.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley&Sons, 2001.
  • Kuhapatanakul, K., Chobsorn, J., On the generalized Leonardo numbers, Integers, 22(2022), A48.
  • Kumari, M., Prasad, K., Mahato, H., Catarino, P.M.M., On the generalized Leonardo quaternions and associated spinors, Kragujevac Journal of Mathematics, 50(3)(2026), 425–438.
  • Cerda-Morales, G., Introduction to generalized Leonardo-Alwyn hybrid numbers, (2024), arXiv:2405.13074.
  • Saçlı, G.Y., Yüce, S., A note on hyper-dual numbers with the Leonardo-Alwyn sequence, Turkish Journal of Mathematics and Computer Science, 16(1)(2024), 154–161.
  • Savin, D., Tan, E., On Companion sequences associated with Leonardo quaternions: Applications over finite fields, (2024), arXiv:2403.01592.
  • Shannon, A.G., A note on generalized Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 25(3)(2019), 97–101.
  • Shattuck, M., Combinatorial proofs of identities for the generalized Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 28(24)(2022), 778–790.
  • Sloane, N.J.A., The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
  • Vajda, S., Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, Halsted Press, 1989.
  • Yilmaz, Ç.Z., Saçlı, G.Y., On dual quaternions with k-generalized Leonardo components, Journal of New Theory, 44(2023), 31–42.
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Yasemin Alp 0000-0002-4146-7374

Publication Date December 31, 2024
Submission Date April 3, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Alp, Y. (2024). On the Generalized Francois Numbers. Turkish Journal of Mathematics and Computer Science, 16(2), 346-353. https://doi.org/10.47000/tjmcs.1464650
AMA Alp Y. On the Generalized Francois Numbers. TJMCS. December 2024;16(2):346-353. doi:10.47000/tjmcs.1464650
Chicago Alp, Yasemin. “On the Generalized Francois Numbers”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 346-53. https://doi.org/10.47000/tjmcs.1464650.
EndNote Alp Y (December 1, 2024) On the Generalized Francois Numbers. Turkish Journal of Mathematics and Computer Science 16 2 346–353.
IEEE Y. Alp, “On the Generalized Francois Numbers”, TJMCS, vol. 16, no. 2, pp. 346–353, 2024, doi: 10.47000/tjmcs.1464650.
ISNAD Alp, Yasemin. “On the Generalized Francois Numbers”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 346-353. https://doi.org/10.47000/tjmcs.1464650.
JAMA Alp Y. On the Generalized Francois Numbers. TJMCS. 2024;16:346–353.
MLA Alp, Yasemin. “On the Generalized Francois Numbers”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 346-53, doi:10.47000/tjmcs.1464650.
Vancouver Alp Y. On the Generalized Francois Numbers. TJMCS. 2024;16(2):346-53.