Research Article
BibTex RIS Cite

Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame

Year 2024, Volume: 16 Issue: 2, 498 - 506, 31.12.2024
https://doi.org/10.47000/tjmcs.1488986

Abstract

This paper investigates position vectors of arbitrary curves in isotropic 3-space (denoted by I^3). We first establish the relationship between a curve’s position vector and the Frenet frame. Then, we derive a natural representation of any curve’s position vector using curvature and torsion. Furthermore, we define various curves within isotropic space, including straight lines, plane curves, helices, general helices, Salkowski curves, and anti-Salkowski curves. Finally, graphical illustrations accompany illustrative examples to elucidate the discussed concepts.

References

  • Ali, A.T., Position vectors of spacelike general helices in Minkowski 3-space, Nonlin. Anal. Theory Meth. Appl., 73(2010), 1118–1126.
  • Ali, A.T., Position vectors of slant helices in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 20(1)(2012), 1–6.
  • Ali, A.T., Position vectors of curves in the Galilean space G3, Matemati˘cki Vesnik, 64(3)(2012), 200–210.
  • Aydın, M.E., A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom., 107(2016), 603–615.
  • Brauner, H., Geometrie des Zweifach Isotropen Raumes I, J. Reine Angew. Math., 224(1966), 118–146.
  • Erjavec, Z., Divjak, B., Horvat, D. The general solutions of Frenet’s system in the equiform geometry of the Galilean, pseudo-Galilean , simple isotropic and double isotropic space, International Mathematical Forum, 6(17)(2011), 837–856.
  • Güzelkardeşler, G., Şahiner, B., An alternative method for determination of the position vector of a slant helix, Journal of New Theory, 44(2023), 97–105.
  • Izumiya, S., Takeuchi,N., New special curves and developable surfaces, Turk. J. Math., 28(2004), 531–537.
  • Kızıltuğ, S., Kaya, S., Tarakçı, Ö ., The slant helices according to type-2 bishop frame in Euclidean 3-space, International Journal of Pure and Applied Mathematics, 85(2)(2013), 211–222.
  • Molnar, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom., 38(1997), 261–288.
  • Monterde, J., Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design, 26(2009), 271–278.
  • Osman Öğrenmiş, A., Külahçı, M., Bektaş, M., A Survey for some special curves in isotropic space,Physical Review Research International, 3(4)(2013), 321–329.
  • Özyurt, G., Position Vectors and Characterization of Curves in the Isotropic Space, Master Thesis, Institute of Sciences, Amasya University, Amasya, 2021.
  • Pavkovic, B.J., Kamenarovic, I., The general solution of the Frenet’s system in the doubly isotropic space I(2) 3 , Rad JAZU, 428(1987), 17–24.
  • Pavkovi´c, B.J., Kamenarovi´c, I., The equiform differential geometry of curves in the Galilean space, Glasnik Matematik˘ci, 22(42)(1987), 449–457.
  • Pavkovi´c, B.J., The general solution of the Frenet system of differential equations for curves in the Galilean space G3, Rad HAZU Math., 450 (1990), 123–128.
  • Sachs, H., Isotrope Geometrie des Raumes, Vieweg, Braunschweig/ Wiesbaden, 1990.
  • Salkowski, E., Zur transformation von raumkurven, Math. Ann., 66(1909), 517–557.
  • Şahin, T., Ceylan Dirişen, B., Position vectors of curves with respect to Darboux frame in the Galilean space G3, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2)(2019), 2079–2093.
Year 2024, Volume: 16 Issue: 2, 498 - 506, 31.12.2024
https://doi.org/10.47000/tjmcs.1488986

Abstract

References

  • Ali, A.T., Position vectors of spacelike general helices in Minkowski 3-space, Nonlin. Anal. Theory Meth. Appl., 73(2010), 1118–1126.
  • Ali, A.T., Position vectors of slant helices in Euclidean 3-space, Journal of the Egyptian Mathematical Society, 20(1)(2012), 1–6.
  • Ali, A.T., Position vectors of curves in the Galilean space G3, Matemati˘cki Vesnik, 64(3)(2012), 200–210.
  • Aydın, M.E., A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom., 107(2016), 603–615.
  • Brauner, H., Geometrie des Zweifach Isotropen Raumes I, J. Reine Angew. Math., 224(1966), 118–146.
  • Erjavec, Z., Divjak, B., Horvat, D. The general solutions of Frenet’s system in the equiform geometry of the Galilean, pseudo-Galilean , simple isotropic and double isotropic space, International Mathematical Forum, 6(17)(2011), 837–856.
  • Güzelkardeşler, G., Şahiner, B., An alternative method for determination of the position vector of a slant helix, Journal of New Theory, 44(2023), 97–105.
  • Izumiya, S., Takeuchi,N., New special curves and developable surfaces, Turk. J. Math., 28(2004), 531–537.
  • Kızıltuğ, S., Kaya, S., Tarakçı, Ö ., The slant helices according to type-2 bishop frame in Euclidean 3-space, International Journal of Pure and Applied Mathematics, 85(2)(2013), 211–222.
  • Molnar, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom., 38(1997), 261–288.
  • Monterde, J., Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design, 26(2009), 271–278.
  • Osman Öğrenmiş, A., Külahçı, M., Bektaş, M., A Survey for some special curves in isotropic space,Physical Review Research International, 3(4)(2013), 321–329.
  • Özyurt, G., Position Vectors and Characterization of Curves in the Isotropic Space, Master Thesis, Institute of Sciences, Amasya University, Amasya, 2021.
  • Pavkovic, B.J., Kamenarovic, I., The general solution of the Frenet’s system in the doubly isotropic space I(2) 3 , Rad JAZU, 428(1987), 17–24.
  • Pavkovi´c, B.J., Kamenarovi´c, I., The equiform differential geometry of curves in the Galilean space, Glasnik Matematik˘ci, 22(42)(1987), 449–457.
  • Pavkovi´c, B.J., The general solution of the Frenet system of differential equations for curves in the Galilean space G3, Rad HAZU Math., 450 (1990), 123–128.
  • Sachs, H., Isotrope Geometrie des Raumes, Vieweg, Braunschweig/ Wiesbaden, 1990.
  • Salkowski, E., Zur transformation von raumkurven, Math. Ann., 66(1909), 517–557.
  • Şahin, T., Ceylan Dirişen, B., Position vectors of curves with respect to Darboux frame in the Galilean space G3, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2)(2019), 2079–2093.
There are 19 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Articles
Authors

Tevfik Şahin 0000-0001-7598-5842

Gülnur Özyurt 0009-0007-0384-112X

Publication Date December 31, 2024
Submission Date May 26, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Şahin, T., & Özyurt, G. (2024). Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame. Turkish Journal of Mathematics and Computer Science, 16(2), 498-506. https://doi.org/10.47000/tjmcs.1488986
AMA Şahin T, Özyurt G. Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame. TJMCS. December 2024;16(2):498-506. doi:10.47000/tjmcs.1488986
Chicago Şahin, Tevfik, and Gülnur Özyurt. “Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 498-506. https://doi.org/10.47000/tjmcs.1488986.
EndNote Şahin T, Özyurt G (December 1, 2024) Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame. Turkish Journal of Mathematics and Computer Science 16 2 498–506.
IEEE T. Şahin and G. Özyurt, “Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame”, TJMCS, vol. 16, no. 2, pp. 498–506, 2024, doi: 10.47000/tjmcs.1488986.
ISNAD Şahin, Tevfik - Özyurt, Gülnur. “Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 498-506. https://doi.org/10.47000/tjmcs.1488986.
JAMA Şahin T, Özyurt G. Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame. TJMCS. 2024;16:498–506.
MLA Şahin, Tevfik and Gülnur Özyurt. “Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 498-06, doi:10.47000/tjmcs.1488986.
Vancouver Şahin T, Özyurt G. Position Vectors of Curves in Isotropic Space $I^3$ and Their Relation to the Frenet Frame. TJMCS. 2024;16(2):498-506.