Research Article
BibTex RIS Cite

$B-$Fractional Integrals on Variable Lebesgue Spaces

Year 2024, Volume: 16 Issue: 2, 333 - 345, 31.12.2024
https://doi.org/10.47000/tjmcs.1505489

Abstract

Here, the fractional integral operators which are generated by Laplace-Bessel differential operator will be examined. It will also be shown that $M^{\alpha}_{\nu},\, I^{\alpha}_{\nu}: L_{p(\cdot),\nu}(\mathbb{R}^{n}_{k,+})\rightarrow L_{q(\cdot),\nu}(\mathbb{R}^{n}_{k,+})$ are bounded, where $M^{\alpha}_{\nu}$ is $B-$fractional maximal operator, $I^{\alpha}_{\nu}$ is $B-$Riesz potential and $\dfrac{1}{p(\cdot)}-\dfrac{1}{q(\cdot)}=\dfrac{\alpha}{Q}$.

References

  • Aliev, I.A., Bayrakçı, S., On inversion of B-elliptic potentials associated with the Laplace-Bessel differential operator, Fract. Calc. Appl. Anal., 4(1998), 365–384.
  • Almeida, A., Inversion of the Riesz potential operator on Lebesgue spaces with variable exponent, Fract. Calc. Appl. Anal., 6(2003), 311–327.
  • Almeida, A., Samko, S., Characterization of Riesz and Bessel potentials on variable Lebesgue spaces, J. Funct. Spaces Appl., 4(2006), 113–144.
  • Aykol, C., Hasanov, J.J., On the boundedness of B-maximal commutators, commutators of B-Riesz potentials and B-singular integral operators in modified B-Morrey spaces, Acta Sci. Math. (Szeged), 86(2020), 521–547.
  • Aykol, C., Kaya, E., B-maximal operators, B-singular integral operators and B-Riesz potentials in variable exponent Lorentz spaces, Filomat, 37(2023), 5765–5774.
  • Capone, C., Cruz-Uribe, D., S.F.O., Fiorenza, A., The fractional maximal operator and fractional integrals on variable Lp spaces, Revista Matem´atica Iberoamericana, 23(2007), 743–770.
  • Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue spaces, Foundations and Harmonic Analysis, Springer Science, Business Media, 2013.
  • Cruz-Uribe, D., Shukla, P., The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type, arXiv preprint arXiv:1511.09456, (2015), 1–31.
  • Diening, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·), Math. Nachr., 268(2004), 31–43.
  • Edmunds, D.E., Meskhi, A., Potential-type operators in Lp(x) spaces, Z. Anal. Anwendungen, 21(2002), 681–690.
  • Ekincioglu, I., Guliyev, V.S., Kaya, E., Bn−maximal operator and Bn-singular integral operators on variable exponent Lebesgue spaces, Mathematica Slovaca, 70(2020), 893–902.
  • Ekincioglu, I., Shishkina, E.L., Kaya, E., On the boundedness of the generalized translation operator on variable exponent Lebesgue spaces, Acta Appl. Math., 173(2021), 1–14.
  • Gadjiev, A.D., Guliyev, V.S., S¸ erbetc¸i, A., Guliyev, E.V., The Stein-Weiss type inequalities for the B−Riesz potentials, Journal of Math. Inequal., 5(2011), 87–106.
  • Guliyev, E.V., Weighted inequality for fractional maximal functions and fractional integrals, associated with the Laplace-Bessel differential operator, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26(2006), 71–80.
  • Guliyev, V.S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2003), 317–330.
  • Guliyev, V.S., Garakhanova, N.N., Zeren, Y., Pointwise and integral estimates for the B-Riesz potential in terms of B-maximal and B-fractional maximal functions, Sib. Math. J., 49(2008), 1008–1022.
  • Hasanov, J.J., Ayazoglu, R., Bayrakçı, S., B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials on B-Morrey spaces, Open Mathematics, 18(2020), 715–730.
  • Kaya, E., Maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces, Open Mathematics, 19(2021), 306–315.
  • Kaya, E., A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.,71(2022), 710–719.
  • Kaya, E., Aykol, C., B-Riezs potential in B-local Morrey-Lorentz spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 73(2024), 437–449.
  • Kipriyanov, I.A., Singular Elliptic Boundary Value Problems, Nauka, Moscow, 1997.
  • Klyuchantsev, M.I., On singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(1970), 810–821. translation in Siberian Math. J., 11(1970), 612–620.
  • Kovacik, O., Rakosnik, J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41(1991), 592–618.
  • Levitan, B.M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk 6., 42(1951), 102–143.
  • Levitan, BM., Expansion in Fourier series and integrals with Bessel functions, Uspekhi Mat. Nauk., 6(2)(1951), 2–143.
  • Muckenhoupt, B., Wheeden, R.L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192(1974), 261–274.
  • Riesz, M., L’int´egrale de Riemann-Liouville et le probl`eme de Cauchy, Acta Math., 81(1949), 1–223.
  • Samko, S., Convolution and potential type operators in Lp(x)(Rn), Integral Transform. Spec. Funct., 7(1998), 261–284.
  • Sarıkaya, M.Z., Yıldırım, H., On Sobolev type theorem for the generalized Riesz potential generated by the generalized shift operator on Morrey space, Sarajevo Journal of Mathematics, 4(2008), 207–214.
  • Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No 30 Princeton University Press, Princeton, N.J., 1970.
  • Yıldırım, H., Riesz potentials generated by a generalized shift operator, Ankara University Graduate School of Natural and Applied Science, Department of Math. Ph.D. thesis, 1995.
  • Yıldırım, H., Sarıkaya, M.Z., (p, q) properties of a generalized Riesz potentials generated by the generalized shift operators, Taiwanese J. Math., 12(2008), 1201–1209.
Year 2024, Volume: 16 Issue: 2, 333 - 345, 31.12.2024
https://doi.org/10.47000/tjmcs.1505489

Abstract

References

  • Aliev, I.A., Bayrakçı, S., On inversion of B-elliptic potentials associated with the Laplace-Bessel differential operator, Fract. Calc. Appl. Anal., 4(1998), 365–384.
  • Almeida, A., Inversion of the Riesz potential operator on Lebesgue spaces with variable exponent, Fract. Calc. Appl. Anal., 6(2003), 311–327.
  • Almeida, A., Samko, S., Characterization of Riesz and Bessel potentials on variable Lebesgue spaces, J. Funct. Spaces Appl., 4(2006), 113–144.
  • Aykol, C., Hasanov, J.J., On the boundedness of B-maximal commutators, commutators of B-Riesz potentials and B-singular integral operators in modified B-Morrey spaces, Acta Sci. Math. (Szeged), 86(2020), 521–547.
  • Aykol, C., Kaya, E., B-maximal operators, B-singular integral operators and B-Riesz potentials in variable exponent Lorentz spaces, Filomat, 37(2023), 5765–5774.
  • Capone, C., Cruz-Uribe, D., S.F.O., Fiorenza, A., The fractional maximal operator and fractional integrals on variable Lp spaces, Revista Matem´atica Iberoamericana, 23(2007), 743–770.
  • Cruz-Uribe, D., Fiorenza, A., Variable Lebesgue spaces, Foundations and Harmonic Analysis, Springer Science, Business Media, 2013.
  • Cruz-Uribe, D., Shukla, P., The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type, arXiv preprint arXiv:1511.09456, (2015), 1–31.
  • Diening, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·), Math. Nachr., 268(2004), 31–43.
  • Edmunds, D.E., Meskhi, A., Potential-type operators in Lp(x) spaces, Z. Anal. Anwendungen, 21(2002), 681–690.
  • Ekincioglu, I., Guliyev, V.S., Kaya, E., Bn−maximal operator and Bn-singular integral operators on variable exponent Lebesgue spaces, Mathematica Slovaca, 70(2020), 893–902.
  • Ekincioglu, I., Shishkina, E.L., Kaya, E., On the boundedness of the generalized translation operator on variable exponent Lebesgue spaces, Acta Appl. Math., 173(2021), 1–14.
  • Gadjiev, A.D., Guliyev, V.S., S¸ erbetc¸i, A., Guliyev, E.V., The Stein-Weiss type inequalities for the B−Riesz potentials, Journal of Math. Inequal., 5(2011), 87–106.
  • Guliyev, E.V., Weighted inequality for fractional maximal functions and fractional integrals, associated with the Laplace-Bessel differential operator, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26(2006), 71–80.
  • Guliyev, V.S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2003), 317–330.
  • Guliyev, V.S., Garakhanova, N.N., Zeren, Y., Pointwise and integral estimates for the B-Riesz potential in terms of B-maximal and B-fractional maximal functions, Sib. Math. J., 49(2008), 1008–1022.
  • Hasanov, J.J., Ayazoglu, R., Bayrakçı, S., B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials on B-Morrey spaces, Open Mathematics, 18(2020), 715–730.
  • Kaya, E., Maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces, Open Mathematics, 19(2021), 306–315.
  • Kaya, E., A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.,71(2022), 710–719.
  • Kaya, E., Aykol, C., B-Riezs potential in B-local Morrey-Lorentz spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 73(2024), 437–449.
  • Kipriyanov, I.A., Singular Elliptic Boundary Value Problems, Nauka, Moscow, 1997.
  • Klyuchantsev, M.I., On singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(1970), 810–821. translation in Siberian Math. J., 11(1970), 612–620.
  • Kovacik, O., Rakosnik, J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41(1991), 592–618.
  • Levitan, B.M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk 6., 42(1951), 102–143.
  • Levitan, BM., Expansion in Fourier series and integrals with Bessel functions, Uspekhi Mat. Nauk., 6(2)(1951), 2–143.
  • Muckenhoupt, B., Wheeden, R.L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192(1974), 261–274.
  • Riesz, M., L’int´egrale de Riemann-Liouville et le probl`eme de Cauchy, Acta Math., 81(1949), 1–223.
  • Samko, S., Convolution and potential type operators in Lp(x)(Rn), Integral Transform. Spec. Funct., 7(1998), 261–284.
  • Sarıkaya, M.Z., Yıldırım, H., On Sobolev type theorem for the generalized Riesz potential generated by the generalized shift operator on Morrey space, Sarajevo Journal of Mathematics, 4(2008), 207–214.
  • Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No 30 Princeton University Press, Princeton, N.J., 1970.
  • Yıldırım, H., Riesz potentials generated by a generalized shift operator, Ankara University Graduate School of Natural and Applied Science, Department of Math. Ph.D. thesis, 1995.
  • Yıldırım, H., Sarıkaya, M.Z., (p, q) properties of a generalized Riesz potentials generated by the generalized shift operators, Taiwanese J. Math., 12(2008), 1201–1209.
There are 32 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis, Operator Algebras and Functional Analysis, Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Esra Kaya 0000-0002-6971-0452

Publication Date December 31, 2024
Submission Date June 26, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Kaya, E. (2024). $B-$Fractional Integrals on Variable Lebesgue Spaces. Turkish Journal of Mathematics and Computer Science, 16(2), 333-345. https://doi.org/10.47000/tjmcs.1505489
AMA Kaya E. $B-$Fractional Integrals on Variable Lebesgue Spaces. TJMCS. December 2024;16(2):333-345. doi:10.47000/tjmcs.1505489
Chicago Kaya, Esra. “$B-$Fractional Integrals on Variable Lebesgue Spaces”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 333-45. https://doi.org/10.47000/tjmcs.1505489.
EndNote Kaya E (December 1, 2024) $B-$Fractional Integrals on Variable Lebesgue Spaces. Turkish Journal of Mathematics and Computer Science 16 2 333–345.
IEEE E. Kaya, “$B-$Fractional Integrals on Variable Lebesgue Spaces”, TJMCS, vol. 16, no. 2, pp. 333–345, 2024, doi: 10.47000/tjmcs.1505489.
ISNAD Kaya, Esra. “$B-$Fractional Integrals on Variable Lebesgue Spaces”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 333-345. https://doi.org/10.47000/tjmcs.1505489.
JAMA Kaya E. $B-$Fractional Integrals on Variable Lebesgue Spaces. TJMCS. 2024;16:333–345.
MLA Kaya, Esra. “$B-$Fractional Integrals on Variable Lebesgue Spaces”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 333-45, doi:10.47000/tjmcs.1505489.
Vancouver Kaya E. $B-$Fractional Integrals on Variable Lebesgue Spaces. TJMCS. 2024;16(2):333-45.