Research Article
BibTex RIS Cite

On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$

Year 2024, Volume: 16 Issue: 2, 471 - 480, 31.12.2024
https://doi.org/10.47000/tjmcs.1507142

Abstract

In this paper, a novel subclass, denoted as $\mathcal{PH}(q, \alpha)$, is unveiled within the domain of harmonic functions in the open unit disk $\mathbb{E}$. This subclass, comprised of functions $\mathfrak{f}=\mathfrak{u}+\overline{\mathfrak{v}}\in \mathcal{SH}^{0}$, is characterized by a specific inequality involving the $q$-derivative operator. Through meticulous analysis, it is demonstrated that functions belonging to $\mathcal{PH}(q, \alpha)$ exhibit remarkable close-to-convexity properties. Furthermore, diverse results such as distortion theorem, coefficient bounds, and a sufficient coefficient condition are yielded by the exploration. Additionally, the closure properties of $\mathcal{PH}(q, \alpha)$ under convolution operations and convex combination are elucidated, underscoring its structural coherence and relevance in the broader context of harmonic mappings.

References

  • Ahuja, O.P., C¸ etinkaya, A., Use of Qquantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conference Proceedings, 2095(2019), 020001-14.
  • Ahuja, O.P., C¸ etinkaya, A., Connecting quantum calculus and harmonic starlike functions, Filomat, 34(5)(2020), 1431–1441.
  • Ahuja, O.P., C¸ etinkaya, A., Polatoglu, Y., Harmonic univalent convex functions using a quantum calculus approach, Acta Universitatis Apulensis, 58(2019), 67–81.
  • Çakmak, S., Yaşar, E., Yalçın, S., New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacettepe Journal of Mathematics and Statistics, 51(1)(2022), 172–186.
  • Çakmak, S., Regarding a novel subclass of harmonic multivalent functions defined by higher-order differential inequality, Iranian Journal of Science, 48(2024), 1541–1550.
  • Cakmak, S., Yasar, E., Yalc¸ın Tokgöz, S., Some basic properties of a subclass of close-to-convex harmonic mappings, Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics, 15(2)(2024), 163–173.
  • Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I., 9(1984), 3–25.
  • Feje´r, L., Über die Positivita¨t von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten, Acta Litt. Ac Sei. Szeged, (1925), 75–86.
  • Goodman, A.W., Univalent Functions, vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
  • Jackson, F.H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(2)(1909), 253–281.
  • Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M., Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15(1)(2002), 63–69.
  • Ponnusamy, S., Yamamoto, H., Yanagihara, H., Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ., 58(1)(2013), 23–34.
  • Li, L., Ponnusamy, S., Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. Appl., 408(2013), 589–596.
  • Li, L., Ponnusamy, S., Injectivity of sections of univalent harmonic mappings, Nonlinear Anal., 89(2013), 276–283.
  • Salagean, G.S., Subclass of univalent functions, in Complex Analysis-Fifth Romanian Finish Seminar, (1983), 362–372.
  • Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145–152.
  • Yalçın, S., Bayram, H., On harmonic univalent functions involving q-poisson distribution series, MJPS, 8(2)(2021).
Year 2024, Volume: 16 Issue: 2, 471 - 480, 31.12.2024
https://doi.org/10.47000/tjmcs.1507142

Abstract

References

  • Ahuja, O.P., C¸ etinkaya, A., Use of Qquantum calculus approach in mathematical sciences and its role in geometric function theory, AIP Conference Proceedings, 2095(2019), 020001-14.
  • Ahuja, O.P., C¸ etinkaya, A., Connecting quantum calculus and harmonic starlike functions, Filomat, 34(5)(2020), 1431–1441.
  • Ahuja, O.P., C¸ etinkaya, A., Polatoglu, Y., Harmonic univalent convex functions using a quantum calculus approach, Acta Universitatis Apulensis, 58(2019), 67–81.
  • Çakmak, S., Yaşar, E., Yalçın, S., New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacettepe Journal of Mathematics and Statistics, 51(1)(2022), 172–186.
  • Çakmak, S., Regarding a novel subclass of harmonic multivalent functions defined by higher-order differential inequality, Iranian Journal of Science, 48(2024), 1541–1550.
  • Cakmak, S., Yasar, E., Yalc¸ın Tokgöz, S., Some basic properties of a subclass of close-to-convex harmonic mappings, Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics, 15(2)(2024), 163–173.
  • Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I., 9(1984), 3–25.
  • Feje´r, L., Über die Positivita¨t von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten, Acta Litt. Ac Sei. Szeged, (1925), 75–86.
  • Goodman, A.W., Univalent Functions, vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
  • Jackson, F.H., On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(2)(1909), 253–281.
  • Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M., Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15(1)(2002), 63–69.
  • Ponnusamy, S., Yamamoto, H., Yanagihara, H., Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ., 58(1)(2013), 23–34.
  • Li, L., Ponnusamy, S., Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. Appl., 408(2013), 589–596.
  • Li, L., Ponnusamy, S., Injectivity of sections of univalent harmonic mappings, Nonlinear Anal., 89(2013), 276–283.
  • Salagean, G.S., Subclass of univalent functions, in Complex Analysis-Fifth Romanian Finish Seminar, (1983), 362–372.
  • Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145–152.
  • Yalçın, S., Bayram, H., On harmonic univalent functions involving q-poisson distribution series, MJPS, 8(2)(2021).
There are 17 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Serkan Çakmak 0000-0003-0368-7672

Publication Date December 31, 2024
Submission Date June 29, 2024
Acceptance Date November 7, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Çakmak, S. (2024). On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. Turkish Journal of Mathematics and Computer Science, 16(2), 471-480. https://doi.org/10.47000/tjmcs.1507142
AMA Çakmak S. On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. TJMCS. December 2024;16(2):471-480. doi:10.47000/tjmcs.1507142
Chicago Çakmak, Serkan. “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”. Turkish Journal of Mathematics and Computer Science 16, no. 2 (December 2024): 471-80. https://doi.org/10.47000/tjmcs.1507142.
EndNote Çakmak S (December 1, 2024) On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. Turkish Journal of Mathematics and Computer Science 16 2 471–480.
IEEE S. Çakmak, “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”, TJMCS, vol. 16, no. 2, pp. 471–480, 2024, doi: 10.47000/tjmcs.1507142.
ISNAD Çakmak, Serkan. “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”. Turkish Journal of Mathematics and Computer Science 16/2 (December 2024), 471-480. https://doi.org/10.47000/tjmcs.1507142.
JAMA Çakmak S. On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. TJMCS. 2024;16:471–480.
MLA Çakmak, Serkan. “On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 2, 2024, pp. 471-80, doi:10.47000/tjmcs.1507142.
Vancouver Çakmak S. On Properties of $q$-Close-to-Convex Harmonic Functions of Order $\alpha$. TJMCS. 2024;16(2):471-80.