Research Article
BibTex RIS Cite

Year 2025, Volume: 17 Issue: 1, 167 - 183, 30.06.2025
https://doi.org/10.47000/tjmcs.1588402

Abstract

References

  • Ali, R.M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., 26(1)(2003), 63–71.
  • Ali, Md. F., Thomas, D.K., Vasudevarao, A., Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97(2)(2018), 253–264.
  • Amourah, A., Frasin, B., Salah, J., aYousef, F., Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials, Symmetry, 17(2)(2025), 157.
  • Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17(1)(2019), 1615–1630.
  • Breaz, D., Panigrahi, T., El-Deeb, S. M., Pattnayak, E., Sivasubramanian, S., Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain, Symmetry, 16(2)(2024).
  • Buyankara, M., C¸ a˘glar, M., Hankel and Toeplitz determinants for a subclass of analytic functions, Mate. Stud., 60(2)(2023), 132–137.
  • Carathe´odory, C., U¨ ber den Variabilita¨tsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64(1)(1907), 95–115.
  • Cudna, K., Kwon, O.S., Lecko, A., Sim, Y.J., Smisrowska, B., The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bolet´ın de la Sociedad Matem´atica Mexicana, 26(2020), 361–375.
  • Duren, P.L., Univalent Functions, Grundlehren der mathematischen Wissenschaften,Springer, New York, 259, 2001.
  • Fekete, M., Szegö, G., Eine Bemerkung ¨uber ungerade schlichte Funktionen, J. Lond. Math. Soc., 8(1933), 85–89.
  • Khatter, K., Ravichandran, V., Kumar, S.S., Estimates for initial coefficients of certain starlike functions with respect to symmetric points, J. M. Cushing et al. (eds.), Applied Analysis in Biological and Physical Sciences, Springer Proc. Math. Stat., Springer, New Delhi, 186, 2016.
  • Kowalczyk, B., Lecko, A., Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc., 105(3)(2022), 458–467.
  • Krushkal, S.L., Univalent functions and holomorphic motions, J. d’Analyse Math., 66(1995), 253–275.
  • Krushkal, S.L., A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv:1408.1948 [math.CV], 2014. .
  • Kumar S., Pandey R.K., Rai P.: Sharp bounds on coefficient functionals of certain Sakaguchi functions, arXiv:2308.11352 [math.CV].
  • Kumar, S.S., Gangania, K., A cardioid domain and starlike functions, Anal. Math. Phy., 11(2)(2021).
  • Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251–257.
  • Ma, W.: Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234(1)(1999), 328–339.
  • Mandal, S., Roy, P.P., Ahamed, M.B., Hankel and toeplitz determinants of logarithmic coefficients of inverse functions for certain classes of univalent functions, Iran. J. Sc.,49(1)(2025), 243–252.
  • Noonan, W., Thomas, D.K., On the second Hankel determinant of areally mean p-valent function, Trans. Amer. Math. Soc., 223(1976), 337–346.
  • Obradovic, M., Tuneski, N., Hermitian Toeplitz determinants for the class S of univalent functions, Armenian J. Math., 13(4), 1–10.
  • Panigrahi, T., Pattnayak, E., El-Ashwah, R., Estimate on logarithmic coefficients of Kamali-type starlike functions associated with four-leaf shaped domain, Surveys Math. Appl., 19(2024), 41–55.
  • Pommerenke, C., Univalent Functions, Vandenhoeck and Ruprecht, G¨ottingen, Germany, 1975.
  • Ponnusamy, S., Sharma, N.L., Wirths, K.J., Logarithmic coefficients of the inverse of univalent functions, Results Math., 73(4)(2018).
  • Ravichandran, V., Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 20(1)(2004), 31–37.
  • Ravichandran, V., Verma, S., Bound for the fifth coefficient of certain starlike functions, C. R. Acad. Sci. Paris, Ser. 1, 353(2015), 505–510.
  • Ravichandran, V.,d Verma, S., Generalized Zalcman conjecture for some classes of analytic functions, J. Math. Anal. Appl., 450(1)(2017), 592–605.
  • Thomas, D.K., Abdul Halim, S., Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc.,(2016). -4
  • Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1)(1959), 72–75.
  • Shakir, Q.A., Atshan, W.G., On third Hankel determinant for certain subclass of bi-univalent functions, Symmetry, 16(2)(2024), 239.
  • Shi, L., Srivastava, H.M., Cho, N.E., Arif, M., Sharp coefficient bounds for a subclass of bounded turning functions with a cardioid domain, Axioms, 12(8)(2023), 775.
  • Sim, Y.J., Thomas, D.K., On the difference of inverse coefficients of univalent functions, Symmetry, 12(12)(2020).
  • Vasudevarao, A., Arora, V., Shaji, A., On the second Hankel determinant of logarithmic coefficients for certain univalent functions, Mediterr. J. Math., 20(2)(2023).
  • Vasudevarao, A., Shaji, A., Second Hankel determinant for logarithmic inverse coefficients of convex and starlike functions, Bul. Aus. Math. Soc., 111(1)(2025),128–139.
  • Wahid, N.H.A.A., Tumiran, A., Shaba, T.G., Hankel and toeplitz determinants of logarithmic coefficients of inverse functions for the subclass of starlike functions with respect to symmetric conjugate points, Euro. J. Pure Appl. Math., 17(3)(2024), 1818–1830.
  • Ye, K., Lin, J.H., Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16(2016), 577–598
  • Zaprawa, P., Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex., 27(62)(2021).

Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain

Year 2025, Volume: 17 Issue: 1, 167 - 183, 30.06.2025
https://doi.org/10.47000/tjmcs.1588402

Abstract

In the present paper with the aid of subordination, the authors introduce a new subclass of univalent functions namely; starlike functions with respect to symmetric points linked with cardioid domain defined by $S_{s,e}^{**} := \left\{ f \in \mathcal{S}: \frac{2zf^{\prime}(z)}{f(z)-f(-z)} \prec 1+ze^z=:p(z)\right\}$, where the function $p(z)$ maps unit disk $\mathbb{D}:=\{z \in \mathbb{C}: |z|<1\}$ onto a cardioid domain in the right half plane. We investigate the sharp upper bounds of some of the initial coefficients, Fekete-Szeg\"{o} functional and Hankel determinant involving initial coefficients of function $f$ for the class $S_{s, e}^{**}$. Further, we determine some of the sharp bounds of logarithmic inverse coefficients, Hankel, Toeplitz, Hermitian-Toeplitz determinant, Zalcman functional, Kruskal inequality as well as the lower and upper bounds for modulo difference of second and the first logarithmic inverse coefficient for such family. Also we obtained some of our results are sharp and respective extremal functions are mentioned.

References

  • Ali, R.M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., 26(1)(2003), 63–71.
  • Ali, Md. F., Thomas, D.K., Vasudevarao, A., Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97(2)(2018), 253–264.
  • Amourah, A., Frasin, B., Salah, J., aYousef, F., Subfamilies of Bi-Univalent Functions Associated with the Imaginary Error Function and Subordinate to Jacobi Polynomials, Symmetry, 17(2)(2025), 157.
  • Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H., Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17(1)(2019), 1615–1630.
  • Breaz, D., Panigrahi, T., El-Deeb, S. M., Pattnayak, E., Sivasubramanian, S., Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain, Symmetry, 16(2)(2024).
  • Buyankara, M., C¸ a˘glar, M., Hankel and Toeplitz determinants for a subclass of analytic functions, Mate. Stud., 60(2)(2023), 132–137.
  • Carathe´odory, C., U¨ ber den Variabilita¨tsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64(1)(1907), 95–115.
  • Cudna, K., Kwon, O.S., Lecko, A., Sim, Y.J., Smisrowska, B., The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bolet´ın de la Sociedad Matem´atica Mexicana, 26(2020), 361–375.
  • Duren, P.L., Univalent Functions, Grundlehren der mathematischen Wissenschaften,Springer, New York, 259, 2001.
  • Fekete, M., Szegö, G., Eine Bemerkung ¨uber ungerade schlichte Funktionen, J. Lond. Math. Soc., 8(1933), 85–89.
  • Khatter, K., Ravichandran, V., Kumar, S.S., Estimates for initial coefficients of certain starlike functions with respect to symmetric points, J. M. Cushing et al. (eds.), Applied Analysis in Biological and Physical Sciences, Springer Proc. Math. Stat., Springer, New Delhi, 186, 2016.
  • Kowalczyk, B., Lecko, A., Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc., 105(3)(2022), 458–467.
  • Krushkal, S.L., Univalent functions and holomorphic motions, J. d’Analyse Math., 66(1995), 253–275.
  • Krushkal, S.L., A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv:1408.1948 [math.CV], 2014. .
  • Kumar S., Pandey R.K., Rai P.: Sharp bounds on coefficient functionals of certain Sakaguchi functions, arXiv:2308.11352 [math.CV].
  • Kumar, S.S., Gangania, K., A cardioid domain and starlike functions, Anal. Math. Phy., 11(2)(2021).
  • Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251–257.
  • Ma, W.: Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234(1)(1999), 328–339.
  • Mandal, S., Roy, P.P., Ahamed, M.B., Hankel and toeplitz determinants of logarithmic coefficients of inverse functions for certain classes of univalent functions, Iran. J. Sc.,49(1)(2025), 243–252.
  • Noonan, W., Thomas, D.K., On the second Hankel determinant of areally mean p-valent function, Trans. Amer. Math. Soc., 223(1976), 337–346.
  • Obradovic, M., Tuneski, N., Hermitian Toeplitz determinants for the class S of univalent functions, Armenian J. Math., 13(4), 1–10.
  • Panigrahi, T., Pattnayak, E., El-Ashwah, R., Estimate on logarithmic coefficients of Kamali-type starlike functions associated with four-leaf shaped domain, Surveys Math. Appl., 19(2024), 41–55.
  • Pommerenke, C., Univalent Functions, Vandenhoeck and Ruprecht, G¨ottingen, Germany, 1975.
  • Ponnusamy, S., Sharma, N.L., Wirths, K.J., Logarithmic coefficients of the inverse of univalent functions, Results Math., 73(4)(2018).
  • Ravichandran, V., Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 20(1)(2004), 31–37.
  • Ravichandran, V., Verma, S., Bound for the fifth coefficient of certain starlike functions, C. R. Acad. Sci. Paris, Ser. 1, 353(2015), 505–510.
  • Ravichandran, V.,d Verma, S., Generalized Zalcman conjecture for some classes of analytic functions, J. Math. Anal. Appl., 450(1)(2017), 592–605.
  • Thomas, D.K., Abdul Halim, S., Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc.,(2016). -4
  • Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1)(1959), 72–75.
  • Shakir, Q.A., Atshan, W.G., On third Hankel determinant for certain subclass of bi-univalent functions, Symmetry, 16(2)(2024), 239.
  • Shi, L., Srivastava, H.M., Cho, N.E., Arif, M., Sharp coefficient bounds for a subclass of bounded turning functions with a cardioid domain, Axioms, 12(8)(2023), 775.
  • Sim, Y.J., Thomas, D.K., On the difference of inverse coefficients of univalent functions, Symmetry, 12(12)(2020).
  • Vasudevarao, A., Arora, V., Shaji, A., On the second Hankel determinant of logarithmic coefficients for certain univalent functions, Mediterr. J. Math., 20(2)(2023).
  • Vasudevarao, A., Shaji, A., Second Hankel determinant for logarithmic inverse coefficients of convex and starlike functions, Bul. Aus. Math. Soc., 111(1)(2025),128–139.
  • Wahid, N.H.A.A., Tumiran, A., Shaba, T.G., Hankel and toeplitz determinants of logarithmic coefficients of inverse functions for the subclass of starlike functions with respect to symmetric conjugate points, Euro. J. Pure Appl. Math., 17(3)(2024), 1818–1830.
  • Ye, K., Lin, J.H., Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16(2016), 577–598
  • Zaprawa, P., Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex., 27(62)(2021).
There are 37 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Articles
Authors

Trailokya Panigrahi 0000-0001-7289-9578

Eureka Pattnayak 0000-0003-1112-7472

Publication Date June 30, 2025
Submission Date November 20, 2024
Acceptance Date May 2, 2025
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Panigrahi, T., & Pattnayak, E. (2025). Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain. Turkish Journal of Mathematics and Computer Science, 17(1), 167-183. https://doi.org/10.47000/tjmcs.1588402
AMA Panigrahi T, Pattnayak E. Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain. TJMCS. June 2025;17(1):167-183. doi:10.47000/tjmcs.1588402
Chicago Panigrahi, Trailokya, and Eureka Pattnayak. “Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated With Cardioid Domain”. Turkish Journal of Mathematics and Computer Science 17, no. 1 (June 2025): 167-83. https://doi.org/10.47000/tjmcs.1588402.
EndNote Panigrahi T, Pattnayak E (June 1, 2025) Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain. Turkish Journal of Mathematics and Computer Science 17 1 167–183.
IEEE T. Panigrahi and E. Pattnayak, “Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain”, TJMCS, vol. 17, no. 1, pp. 167–183, 2025, doi: 10.47000/tjmcs.1588402.
ISNAD Panigrahi, Trailokya - Pattnayak, Eureka. “Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated With Cardioid Domain”. Turkish Journal of Mathematics and Computer Science 17/1 (June2025), 167-183. https://doi.org/10.47000/tjmcs.1588402.
JAMA Panigrahi T, Pattnayak E. Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain. TJMCS. 2025;17:167–183.
MLA Panigrahi, Trailokya and Eureka Pattnayak. “Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated With Cardioid Domain”. Turkish Journal of Mathematics and Computer Science, vol. 17, no. 1, 2025, pp. 167-83, doi:10.47000/tjmcs.1588402.
Vancouver Panigrahi T, Pattnayak E. Bounds of Coefficient Functional of Certain Subclasses of Analytic Functions Associated with Cardioid Domain. TJMCS. 2025;17(1):167-83.