Research Article
BibTex RIS Cite

A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property

Year 2021, Volume: 6 Issue: 1, 14 - 23, 30.04.2021

Abstract

Introducing the notion of asymptotically isometric copies inside Banach spaces, Dowling, Lennard and Turett made easier to detect failure of the fixed point property for nonexpansive mappings. Their tool was very usefull for indicating the failure. Since then, researchers have investigated alternative tools. Recently, Nezir introduced the notion of asymptotically isometric copies of $\ell^{1\boxplus 0}$. He noticed that a renorming of $\ell^1$ turns out to be a degenerate Lorentz-Marcinkiewicz space and using its structure he introduced his notion which implies the failure of the fixed point property for nonexpansive mappings. In this study, we introduce another notion which is derived from the structure of another degenerate Lorentz-Marcinkiewicz space and we show that detecting our new tool in Banach spaces will indicate the failure of the fixed point property for nonexpansive mappings.

References

  • Alvaro JM, Cembranos P, Mendoza J. Renormings of $c_0$ and the fixed point property. J. Math. Anal. Appl. 454(2), 2017, 1106-1113. Diestel J. Sequences and series in Banach spaces. Springer Science & Business Media, 2012.
  • Dowling PN, Lennard CJ, Turett B. Reflexivity and the fixed-point property for nonexpansive maps. J. Math. Anal. Appl. 200(3), 1996, 653-662.
  • Dowling PN, Lennard CJ. Every nonreflexive subspace of $L_1[0, 1]$ fails the fixed point property. Proc. Amer. Math. Soc. 125, 1997, 443-446.
  • Dowling PN, Johnson WB, Lennard CJ, Turett B. The optimality of James's distortion theorems. Proc. Amer. Math. Soc. 125, 1997, 167-174.
  • Dowling PN, Lennard CJ, Turett B. Renormings of $\ell_1$ and $c_{0}$ and fixed point properties. In: Handbook of Metric Fixed Point Theory, Springer, Netherlands, 2001, pp. 269-297.
  • Lin PK. There is an equivalent norm on $\ell_1$ that has the fixed point property. Nonlinear Anal. 68, 2008, 2303--2308.
  • Lindenstrauss J, Tzafriri L. Classical Banach spaces I: sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 92, Springer-Verlag. 1977.
  • Lorentz GG. Some new functional spaces. Ann. Math. 1950. 37-55.
  • Nezir V. Fixed point properties for a degenerate Lorentz-Marcinkiewicz space. Turkish Journal of Mathematics. 43(4), 2019, 1919-1939. Nezir V. Asymptotically isometric copies of $\ell^{1\boxplus 0}$. Hacet. J. Math. Stat. 49(3), 2020, 984-997.
Year 2021, Volume: 6 Issue: 1, 14 - 23, 30.04.2021

Abstract

References

  • Alvaro JM, Cembranos P, Mendoza J. Renormings of $c_0$ and the fixed point property. J. Math. Anal. Appl. 454(2), 2017, 1106-1113. Diestel J. Sequences and series in Banach spaces. Springer Science & Business Media, 2012.
  • Dowling PN, Lennard CJ, Turett B. Reflexivity and the fixed-point property for nonexpansive maps. J. Math. Anal. Appl. 200(3), 1996, 653-662.
  • Dowling PN, Lennard CJ. Every nonreflexive subspace of $L_1[0, 1]$ fails the fixed point property. Proc. Amer. Math. Soc. 125, 1997, 443-446.
  • Dowling PN, Johnson WB, Lennard CJ, Turett B. The optimality of James's distortion theorems. Proc. Amer. Math. Soc. 125, 1997, 167-174.
  • Dowling PN, Lennard CJ, Turett B. Renormings of $\ell_1$ and $c_{0}$ and fixed point properties. In: Handbook of Metric Fixed Point Theory, Springer, Netherlands, 2001, pp. 269-297.
  • Lin PK. There is an equivalent norm on $\ell_1$ that has the fixed point property. Nonlinear Anal. 68, 2008, 2303--2308.
  • Lindenstrauss J, Tzafriri L. Classical Banach spaces I: sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 92, Springer-Verlag. 1977.
  • Lorentz GG. Some new functional spaces. Ann. Math. 1950. 37-55.
  • Nezir V. Fixed point properties for a degenerate Lorentz-Marcinkiewicz space. Turkish Journal of Mathematics. 43(4), 2019, 1919-1939. Nezir V. Asymptotically isometric copies of $\ell^{1\boxplus 0}$. Hacet. J. Math. Stat. 49(3), 2020, 984-997.
There are 9 citations in total.

Details

Primary Language English
Journal Section Volume VI Issue I 2021
Authors

Veysel Nezir 0000-0001-9640-8526

Nizami Mustafa 0000-0002-2758-0274

Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 6 Issue: 1

Cite

APA Nezir, V., & Mustafa, N. (2021). A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. Turkish Journal of Science, 6(1), 14-23.
AMA Nezir V, Mustafa N. A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. TJOS. April 2021;6(1):14-23.
Chicago Nezir, Veysel, and Nizami Mustafa. “A Nice Copy of a Degenerate Lorentz-Marcinkiewicz Space That Implies the Failure of the Fixed Point Property”. Turkish Journal of Science 6, no. 1 (April 2021): 14-23.
EndNote Nezir V, Mustafa N (April 1, 2021) A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. Turkish Journal of Science 6 1 14–23.
IEEE V. Nezir and N. Mustafa, “A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property”, TJOS, vol. 6, no. 1, pp. 14–23, 2021.
ISNAD Nezir, Veysel - Mustafa, Nizami. “A Nice Copy of a Degenerate Lorentz-Marcinkiewicz Space That Implies the Failure of the Fixed Point Property”. Turkish Journal of Science 6/1 (April 2021), 14-23.
JAMA Nezir V, Mustafa N. A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. TJOS. 2021;6:14–23.
MLA Nezir, Veysel and Nizami Mustafa. “A Nice Copy of a Degenerate Lorentz-Marcinkiewicz Space That Implies the Failure of the Fixed Point Property”. Turkish Journal of Science, vol. 6, no. 1, 2021, pp. 14-23.
Vancouver Nezir V, Mustafa N. A nice copy of a degenerate Lorentz-Marcinkiewicz space that implies the failure of the fixed point property. TJOS. 2021;6(1):14-23.