Research Article
BibTex RIS Cite

ASEMPTOMATİK FİZİKSEL İNAKTİF YETİŞKİNLERDE GÖVDE KAS KUVVETİ İLE PELVİK SALINIMLAR ARASINDAKİ İLİŞKİ

Year 2022, , 139 - 145, 20.12.2022
https://doi.org/10.21653/tjpr.998024

Abstract

Amaç: Pelvis ve gövde yapısı birbiriyle bütünleşmiş vücut bölümleridir. Pelvik mobilite ve gövde kasları arasındaki entegrasyon, yürüme ve enerji tüketiminde önemli bir rol oynar. Bu çalışmanın amacı gövde kas kuvveti ile pelvik salınımlar arasındaki ilişkiyi araştırmaktır.
Yöntem: 28 sağlıklı birey çalışma için gönüllü oldu (16 kadın, 12 erkek; ortalama yaş 24,46 ± 2,97 yıl, boy 172,03 ± 9,41 cm, ağırlık 67,78 ± 16,31 kg). Pelvik salınımlar üç boyutlu kablosuz ivmeölçer kullanılarak ölçüldü. Gövde kas kuvveti İzokinetik Dinamometre (Cybex Humac Norm Testing & Rehabilitation System, USA) ile değerlendirildi. Gövde ekstansörleri ve fleksörleri 60°/sn lik açısal hızda konsantrik olarak test edildi. İstatistiksel olarak ilişkinin yönü ve düzeyi ise Spearman Korelasyon Analizi yapılarak incelendi.
Sonuçlar: Korelasyon analizi, konsantrik gövde fleksiyon kuvveti ile ön-arka pelvik eğim (r=-0,419 p<0,05), yana pelvik eğim(r=-0,768 p<0,001) ve kalça rotasyonu (r=-0,382 p<0,001) arasında anlamlı ilişkiler olduğunu gösterdi. Konsantrik gövde ekstansiyon kuvveti ile ön-arka pelvik eğim ve kalça rotasyonu arasında istatistiksel olarak anlamlı bir ilişki gözlenmedi (p>0,05).
Tartışma: Mevcut çalışma, gövde kas kuvvetinin pelvik salınımlarla ilişkili olduğunu bildirmektedir. Özellikle gövde fleksör grup kaslarının kuvvetindeki artışın pelvis hareketliliğini sınırladığını göstermiştir. Ek olarak, bu sonuçlar gövde kas gücündeki artışın yürüyüş sırasında pelvis için stabil bir temel sağladığını göstermektedir. Bu nedenle mevcut çalışmanın yazarları, stabil bir pelvis yapısının alt ekstremite ile ilgili olası patolojilerin önlenmesine katkıda bulunacağını düşünmektedir.

References

  • 1. Bagherian S, Ghasempoor K, Rahnama N, Wikstrom, EA. The effect of core stability training on functional movement patterns in college athletes. J Sport Rehabil. 2019;28(5):444-449.
  • 2. Celenay, S T, Ozkan T, Unluer NO. Short-Term Effects Of Trunk Kınesıo Tapıng On Trunk Muscle Endurance And Postural Stabılıty In Healthy Young Adults: A Randomızed Controlled Trıal. Turk J Physiother Rehabil. 2019;30(2):89-96.
  • 3. Kim TH, Lee CW, Kim SG, An, BW. The effect of a pelvis-concentrated exercise program on male college students’ body alignment and foot base pressure. J Phys. Ther. Sci. 2015;27(4):1165-7.
  • 4. Tsai YJ, Chia CC, Lee PY, Lin, LC, Kuo, YL. Landing kinematics, sports performance, and isokinetic strength in adolescent male volleyball athletes: influence of core training. J Sport Rehabil. 2019;1(aop):1-8.
  • 5. Katzel LI, Ivey FM, Sorkin JD, Macko, RF, Smith, B, Shulman, LM. Impaired economy of gait and decreased six-minute walk distance in Parkinson's disease. J Parkinsons Dis. 2012;2012.
  • 6. Hammer N, Scholze M, Kibsgård T, Klima, S, Schleifenbaum, S, Seidel, T, et al. Physiological in vitro sacroiliac joint motion: a study on three‐dimensional posterior pelvic ring kinematics. J Anat. 2019;234(3):346-58.
  • 7. Kuszewski MT, Gnat R, Gogola A. The impact of core muscles training on the range of anterior pelvic tilt in subjects with increased stiffness of the hamstrings. Hum Mov Sci. 2018;57:32-9.
  • 8. Park G, Woo Y. Comparison between a center of mass and a foot pressure sensor system for measuring gait parameters in healthy adults. J Phys Ther Sci. 2015;27(10):3199-202.
  • 9. Yazici G, Yazici MV, Çobanoğlu G, Kupeli, B, Ozkul C, Oskay D, et al. The reliability of a wearable movement analysis system (g-walk) on gait and jump assessment in healthy adults. J Exerc Ther Rehabil. 2020;7(2):159-67.
  • 10. Kim CG, Jeoung BJ. Assessment of isokinetic muscle function in Korea male volleyball athletes. J Exerc Rehabil. 2016;12(5):429.
  • 11. García-Vaquero MP, Barbado D, Juan-Recio C, López-Valenciano A, Vera-Garcia FJ. Isokinetic trunk flexion–extension protocol to assess trunk muscle strength and endurance: Reliability, learning effect, and sex differences. J Sport Health Sci. 2020;9(6):692-701.
  • 12. Finner H, Gontscharuk V. Two-sample Kolmogorov–Smirnov-type tests revisited: old and new tests in terms of local levels. Ann Stat. 2018;46(6A):3014-37.
  • 13. Seay JF, Van Emmerik RE, Hamill J. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech. 2011;26(6):572-8.
  • 14. Steele J, Bruce-Low S, Smith D, Jessop D, Osborne N. Lumbar kinematic variability during gait in chronic low back pain and associations with pain, disability and isolated lumbar extension strength. Clin Biomech. 2014;29(10):1131-8.
  • 15. Ebrahimi S, Kamali F, Razeghi M, Haghpanah SA. Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain. Hum Mov Sci. 2017;52:55-66.
  • 16. Bagheri R, Parhampour B, Pourahmadi M, Fazeli SH, Takamjani IE, Akbari M, et al. The effect of core stabilization exercises on trunk–pelvis three-dimensional kinematics during gait in non-specific chronic low back pain. Spine J.. 2019;44(13):927-36.
  • 17. Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J. 2006;15(1):23-40.
  • 18. Hunt MA, Wrigley TV, Hinman RS, Bennell KL. Individuals with severe knee osteoarthritis (OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and those without knee pain. Arthritis Care Res. 2010;62(10):1426-32.
  • 19. Chiba H, Ebihara S, Tomita N, Sasaki H, Butler JP. Differential gait kinematics between fallers and non‐fallers in community‐dwelling elderly people. Geriatr Gerontol Int. 2005;5(2):127-34.
  • 20. Kobayashi Y, Hobara H, Heldoorn TA, Kouchi M, Mochimaru M. Age-independent and age-dependent sex differences in gait pattern determined by principal component analysis. Gait Posture. 2016;46:11-7.
  • 21. Stansfield B, Hawkins K, Adams S, Bhatt H. A mixed linear modelling characterisation of gender and speed related changes in spatiotemporal and kinematic characteristics of gait across a wide speed range in healthy adults. Med Eng Phys. 2018;60:94-102.
  • 22. Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullenkamp AM. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture. 2015;41(2):540-5.
  • 23. Smith LK, Lelas JL, Kerrigan DC. Gender differences in pelvic motions and center of mass displacement during walking: stereotypes quantified. J Wom Health Gend Base Med. 2002;11(5):453-8.
  • 24. Wall‐Scheffler CM, Myers MJ. The biomechanical and energetic advantages of a mediolaterally wide pelvis in women. Anat Rec. 2017;300(4):764-75.
  • 25. Whitcome KK, Miller EE, Burns JL. Pelvic rotation effect on human stride length: Releasing the constraint of obstetric selection. Anat Rec. 2017;300(4):752-63.
  • 26. IJmker T, Lamoth CJ, Houdijk H, van der Woude LH, Beek PJ. Postural threat during walking: effects on energy cost and accompanying gait changes. J Neuroeng Rehabil. 2014;11(1):71.
  • 27. Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am. 1953;35(3):543-58.
  • 28. Gordon KE, Ferris DP, Kuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90(1):136-44.
  • 29. Ortega JD, Farley CT. Minimizing center of mass vertical movement increases metabolic cost in walking. J Appl Physiol. 2005;99(6):2099-107.
  • 30. Wurdeman S, Raffalt P, Stergiou N. Reduced vertical displacement of the center of mass is not accompanied by reduced oxygen uptake during walking. Sci Rep. 2017;7(1):1-13.
  • 31. Alexander RM. Simple models of human movement. Appl Mech Rev. 1995;48(8):461-470.
  • 32. Kuo AD. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Hum Mov Sci. 2007;26(4):617-56.

THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS

Year 2022, , 139 - 145, 20.12.2022
https://doi.org/10.21653/tjpr.998024

Abstract

Purpose: Pelvis and trunk structure are body segments that are integrated with each other. Collaboration between pelvic mobility and trunk muscles plays a significant role in walking and energy consumption. The aim of this study is to investigate the relationship between trunk muscle strength and pelvic oscillations.
Methods: Twenty-eight healthy individuals volunteered for the study (16 women, 12 men; mean age 24.46 ± 2.97 yrs., height 172.03 ± 9.41cm, weight 67.78 ± 16.31 kg). Pelvic oscillations were measured by using a wireless tri-axial accelerometer. Trunk muscle strength was evaluated with Isokinetic Dynamometer (Cybex Humac Norm Testing & Rehabilitation System, USA). The trunk extensors and flexors were tested concentrically at 60°s. Statistically, the direction and level of the relationship were examined by using Spearman Correlation Analysis.
Results: Correlation analysis showed significant relationships between concentric strength of trunk flexion and anterior-posterior pelvic tilt (r=-0.419 p<0.05), lateral pelvic tilt (r=-0.768 p<0.001), and hip rotation (r=-0.382 p<0.001). A statistically significant relationship was not observed between concentric strength of trunk extension and anterior-posterior pelvic tilt, and hip rotation (p>0.05).
Conclusion: The current study reports that trunk muscle strength is associated with pelvic oscillations. In particular, the increase in the strength of the trunk flexor group muscles has been shown to limit the mobility of the pelvis. In addition, these results show that the increase in trunk muscle strength provides a stable basis for the pelvis during walking. Therefore, the authors of the current study think that a stable pelvis structure will contribute to the prevention of possible pathologies related to the lower extremity.

References

  • 1. Bagherian S, Ghasempoor K, Rahnama N, Wikstrom, EA. The effect of core stability training on functional movement patterns in college athletes. J Sport Rehabil. 2019;28(5):444-449.
  • 2. Celenay, S T, Ozkan T, Unluer NO. Short-Term Effects Of Trunk Kınesıo Tapıng On Trunk Muscle Endurance And Postural Stabılıty In Healthy Young Adults: A Randomızed Controlled Trıal. Turk J Physiother Rehabil. 2019;30(2):89-96.
  • 3. Kim TH, Lee CW, Kim SG, An, BW. The effect of a pelvis-concentrated exercise program on male college students’ body alignment and foot base pressure. J Phys. Ther. Sci. 2015;27(4):1165-7.
  • 4. Tsai YJ, Chia CC, Lee PY, Lin, LC, Kuo, YL. Landing kinematics, sports performance, and isokinetic strength in adolescent male volleyball athletes: influence of core training. J Sport Rehabil. 2019;1(aop):1-8.
  • 5. Katzel LI, Ivey FM, Sorkin JD, Macko, RF, Smith, B, Shulman, LM. Impaired economy of gait and decreased six-minute walk distance in Parkinson's disease. J Parkinsons Dis. 2012;2012.
  • 6. Hammer N, Scholze M, Kibsgård T, Klima, S, Schleifenbaum, S, Seidel, T, et al. Physiological in vitro sacroiliac joint motion: a study on three‐dimensional posterior pelvic ring kinematics. J Anat. 2019;234(3):346-58.
  • 7. Kuszewski MT, Gnat R, Gogola A. The impact of core muscles training on the range of anterior pelvic tilt in subjects with increased stiffness of the hamstrings. Hum Mov Sci. 2018;57:32-9.
  • 8. Park G, Woo Y. Comparison between a center of mass and a foot pressure sensor system for measuring gait parameters in healthy adults. J Phys Ther Sci. 2015;27(10):3199-202.
  • 9. Yazici G, Yazici MV, Çobanoğlu G, Kupeli, B, Ozkul C, Oskay D, et al. The reliability of a wearable movement analysis system (g-walk) on gait and jump assessment in healthy adults. J Exerc Ther Rehabil. 2020;7(2):159-67.
  • 10. Kim CG, Jeoung BJ. Assessment of isokinetic muscle function in Korea male volleyball athletes. J Exerc Rehabil. 2016;12(5):429.
  • 11. García-Vaquero MP, Barbado D, Juan-Recio C, López-Valenciano A, Vera-Garcia FJ. Isokinetic trunk flexion–extension protocol to assess trunk muscle strength and endurance: Reliability, learning effect, and sex differences. J Sport Health Sci. 2020;9(6):692-701.
  • 12. Finner H, Gontscharuk V. Two-sample Kolmogorov–Smirnov-type tests revisited: old and new tests in terms of local levels. Ann Stat. 2018;46(6A):3014-37.
  • 13. Seay JF, Van Emmerik RE, Hamill J. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech. 2011;26(6):572-8.
  • 14. Steele J, Bruce-Low S, Smith D, Jessop D, Osborne N. Lumbar kinematic variability during gait in chronic low back pain and associations with pain, disability and isolated lumbar extension strength. Clin Biomech. 2014;29(10):1131-8.
  • 15. Ebrahimi S, Kamali F, Razeghi M, Haghpanah SA. Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain. Hum Mov Sci. 2017;52:55-66.
  • 16. Bagheri R, Parhampour B, Pourahmadi M, Fazeli SH, Takamjani IE, Akbari M, et al. The effect of core stabilization exercises on trunk–pelvis three-dimensional kinematics during gait in non-specific chronic low back pain. Spine J.. 2019;44(13):927-36.
  • 17. Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J. 2006;15(1):23-40.
  • 18. Hunt MA, Wrigley TV, Hinman RS, Bennell KL. Individuals with severe knee osteoarthritis (OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and those without knee pain. Arthritis Care Res. 2010;62(10):1426-32.
  • 19. Chiba H, Ebihara S, Tomita N, Sasaki H, Butler JP. Differential gait kinematics between fallers and non‐fallers in community‐dwelling elderly people. Geriatr Gerontol Int. 2005;5(2):127-34.
  • 20. Kobayashi Y, Hobara H, Heldoorn TA, Kouchi M, Mochimaru M. Age-independent and age-dependent sex differences in gait pattern determined by principal component analysis. Gait Posture. 2016;46:11-7.
  • 21. Stansfield B, Hawkins K, Adams S, Bhatt H. A mixed linear modelling characterisation of gender and speed related changes in spatiotemporal and kinematic characteristics of gait across a wide speed range in healthy adults. Med Eng Phys. 2018;60:94-102.
  • 22. Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullenkamp AM. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture. 2015;41(2):540-5.
  • 23. Smith LK, Lelas JL, Kerrigan DC. Gender differences in pelvic motions and center of mass displacement during walking: stereotypes quantified. J Wom Health Gend Base Med. 2002;11(5):453-8.
  • 24. Wall‐Scheffler CM, Myers MJ. The biomechanical and energetic advantages of a mediolaterally wide pelvis in women. Anat Rec. 2017;300(4):764-75.
  • 25. Whitcome KK, Miller EE, Burns JL. Pelvic rotation effect on human stride length: Releasing the constraint of obstetric selection. Anat Rec. 2017;300(4):752-63.
  • 26. IJmker T, Lamoth CJ, Houdijk H, van der Woude LH, Beek PJ. Postural threat during walking: effects on energy cost and accompanying gait changes. J Neuroeng Rehabil. 2014;11(1):71.
  • 27. Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am. 1953;35(3):543-58.
  • 28. Gordon KE, Ferris DP, Kuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90(1):136-44.
  • 29. Ortega JD, Farley CT. Minimizing center of mass vertical movement increases metabolic cost in walking. J Appl Physiol. 2005;99(6):2099-107.
  • 30. Wurdeman S, Raffalt P, Stergiou N. Reduced vertical displacement of the center of mass is not accompanied by reduced oxygen uptake during walking. Sci Rep. 2017;7(1):1-13.
  • 31. Alexander RM. Simple models of human movement. Appl Mech Rev. 1995;48(8):461-470.
  • 32. Kuo AD. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Hum Mov Sci. 2007;26(4):617-56.
There are 32 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Araştırma Makaleleri
Authors

Ali Zorlular 0000-0003-3791-2399

Elif Aygun Polat 0000-0001-9634-0728

Nihan Kafa 0000-0003-2878-4778

Nevin Atalay Güzel 0000-0003-0467-7310

Publication Date December 20, 2022
Published in Issue Year 2022

Cite

APA Zorlular, A., Aygun Polat, E., Kafa, N., Atalay Güzel, N. (2022). THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi Ve Rehabilitasyon Dergisi, 33(3), 139-145. https://doi.org/10.21653/tjpr.998024
AMA Zorlular A, Aygun Polat E, Kafa N, Atalay Güzel N. THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Turk J Physiother Rehabil. December 2022;33(3):139-145. doi:10.21653/tjpr.998024
Chicago Zorlular, Ali, Elif Aygun Polat, Nihan Kafa, and Nevin Atalay Güzel. “THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS”. Türk Fizyoterapi Ve Rehabilitasyon Dergisi 33, no. 3 (December 2022): 139-45. https://doi.org/10.21653/tjpr.998024.
EndNote Zorlular A, Aygun Polat E, Kafa N, Atalay Güzel N (December 1, 2022) THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi ve Rehabilitasyon Dergisi 33 3 139–145.
IEEE A. Zorlular, E. Aygun Polat, N. Kafa, and N. Atalay Güzel, “THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS”, Turk J Physiother Rehabil, vol. 33, no. 3, pp. 139–145, 2022, doi: 10.21653/tjpr.998024.
ISNAD Zorlular, Ali et al. “THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS”. Türk Fizyoterapi ve Rehabilitasyon Dergisi 33/3 (December 2022), 139-145. https://doi.org/10.21653/tjpr.998024.
JAMA Zorlular A, Aygun Polat E, Kafa N, Atalay Güzel N. THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Turk J Physiother Rehabil. 2022;33:139–145.
MLA Zorlular, Ali et al. “THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS”. Türk Fizyoterapi Ve Rehabilitasyon Dergisi, vol. 33, no. 3, 2022, pp. 139-45, doi:10.21653/tjpr.998024.
Vancouver Zorlular A, Aygun Polat E, Kafa N, Atalay Güzel N. THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Turk J Physiother Rehabil. 2022;33(3):139-45.