Research Article
BibTex RIS Cite

DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES

Year 2021, Volume: 32 Issue: 1, 74 - 80, 10.04.2021
https://doi.org/10.21653/tjpr.775826

Abstract

Purpose: Previous studies that examined pain after submaximal isometric contractions at different intensities are limited in that they used different intensities randomly. The present study aimed to examine the change in pain depending on the order of submaximal isometric contractions performed at two different intensities and inter-and intra-individual differences in pain responses.
Methods: Twenty-nine volunteers participated (mean age=22.10±1.60 years) to the study. Hamstring flexibility was measured in the supine position. Maximal voluntary contraction (MVC) was measured during hip extension. Submaximal contractions were performed at two different target intensities: 25% and 75% of MVC. Visual Analogue Scale (VAS) was used to measure the pain after submaximal contractions. Group A (n=15) performed submaximal contraction in 25% to 75% of MVC in the 1st period and 75% to 25% of MVC in the 2nd period. In Group B (n=14), the submaximal contraction was performed in each period in the opposite order of Group A.
Results: There was a significant decrease in pain in Group B during the 2nd period (p<0.05). The VAS at 75% of the MVC showed a significant decrease at 25% of the MVC (p=0.011). Correlations were observed between flexibility and 1st-period VAS score (p=0.048) and 2nd-period VAS score (p=0.036) and between the VAS scores in the 1st and 2nd periods (p<0.001).
Conclusion: Pain intensity could be perceived differently depending on the order of sequential application, even when the intensities are identical, and might be more clinically useful in the analysis of intra-individual comparisons.

Supporting Institution

Woosong University

Project Number

2020 Woosong University Academic Research Funding

References

  • 1. Dannecker EA, Koltyn KF. Pain during and within hours after exercise in healthy adults. Sports Med. 2014;44(7):921-942. doi:10.1007/s40279-014-0172-z
  • 2. Lieber RL, Friden J. Morphologic and mechanical basis of delayed-onset muscle soreness. J Am Acad Orthop Surg. 2002;10(1):67-73.
  • 3. Newham DJ, Mills KR, Quigley BM, Edwards RH. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci. 1983;64(1):55-62. doi:10.1042/cs0640055
  • 4. Nosaka K, Newton M. Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc. 2002;34(1):63-69. doi:10.1097/00005768-200201000-00011
  • 5. Lim W. The Effects of Proprioceptive Neuromuscular Facilitation and Static Stretching Performed at Various Intensities on Hamstring Flexibility. Physical Therapy Korea. 2020;27(1):30-37.
  • 6. Morgan WP. Psychological factors influencing perceived exertion. Med Sci Sports. 1973;5(2):97-103.
  • 7. Thorén P, Floras JS, Hoffmann P, Seals DR. Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc. 1990;22(4):417-428.
  • 8. Baiamonte BA, Kraemer RR, Chabreck CN, et al. Exercise-induced hypoalgesia: Pain tolerance, preference and tolerance for exercise intensity, and physiological correlates following dynamic circuit resistance exercise. J Sports Sci. 2017;35(18):1-7. doi:10.1080/02640414.2016.1239833
  • 9. Jakobsen MD, Sundstrup E, Persson R, Andersen CH, Andersen LL. Is Borg’s perceived exertion scale a useful indicator of muscular and cardiovascular load in blue-collar workers with lifting tasks? A cross-sectional workplace study. Eur J Appl Physiol. 2014;114(2):425-434. doi:10.1007/s00421-013-2782-9
  • 10. Singh AK, Nagaraj S, Palikhe RM, Neupane B. Neurodynamic sliding versus PNF stretching on hamstring flexibility in collegiate students: A comparative study. International Journal of Physical Education, Sports and Health. 2017;4(1):29-33.
  • 11. Hansberger BL, Loutsch R, Hancock C, Bonser R, Zeigel A, Baker RT. Evaluating the relationship between clinical assessments of apparent hamstring tightness: a correlational analysis. Int J Sports Phys Ther. 2019;14(2):253-263.
  • 12. Oh D, Lim W, Lee N. Concurrent Validity and Intra-Trial Reliability of a Bluetooth-Embedded Inertial Measurement Unit for Real-Time Joint Range of Motion. International Journal of Computer Science in Sport. 2019;18(3):1-11. doi:10.2478/ijcss-2019-0015
  • 13. Lim W. Sex Differences in Repeatability of Measurement for Hamstring Strength During Maximal Voluntary Contractions. Journal of Korean Physical Therapy Science. 2020;27(1):9-17.
  • 14. Lim W. Easy Method for Measuring Stretching Intensities in Real Clinical Settings and Effects of Different Stretching Intensities on Flexibility. Journal of Back and Musculoskeletal Rehabilitation. 2019;32(4):579-585. doi:10.3233/BMR-181243
  • 15. Lim W. Optimal Intensity of PNF Stretching: Maintaining the Efficacy of Stretching While Ensuring Its Safety. J Phys Ther Sci. 2018;30(8):1108-1111. doi:10.1589/jpts.30.1108
  • 16. Lim W. Changes in Pain Following the Different Intensity of the Stretching and Types of Physical Stress. Physical Therapy Korea. 2019;26(4):63-69.
  • 17. Schmitt A, Wallat D, Stangier C, Martin JA, Schlesinger-Irsch U, Boecker H. Effects of fitness level and exercise intensity on pain and mood responses. Eur J Pain. 2020;24(3):568-579. doi:10.1002/ejp.1508
  • 18. Dionne RA, Bartoshuk L, Mogil J, Witter J. Individual responder analyses for pain: does one pain scale fit all? Trends Pharmacol Sci. 2005;26(3):125-130. doi:10.1016/j.tips.2005.01.009
  • 19. Briggs M, Closs JS. A descriptive study of the use of visual analogue scales and verbal rating scales for the assessment of postoperative pain in orthopedic patients. J Pain Symptom Manage. 1999;18(6):438-446. doi:10.1016/s0885-3924(99)00092-5
  • 20. Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72(1-2):95-97. doi:10.1016/s0304-3959(97)00005-5
  • 21. Koltyn KF, Brellenthin AG, Cook DB, Sehgal N, Hillard C. Mechanisms of exercise-induced hypoalgesia. J Pain. 2014;15(12):1294-1304. doi:10.1016/j.jpain.2014.09.006
  • 22. Thornton C, Sheffield D, Baird A. A longitudinal exploration of pain tolerance and participation in contact sports. Scand J Pain. 2017;16:36-44. doi:10.1016/j.sjpain.2017.02.007
  • 23. Ayala F, Sainz de Baranda P, De Ste Croix M, Santonja F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys Ther Sport. 2011;12(4):175-181. doi:10.1016/j.ptsp.2011.02.005
  • 24. Gajdosik R, Lusin G. Hamstring muscle tightness. Reliability of an active-knee-extension test. Phys Ther. 1983;63(7):1085-1090. doi:10.1093/ptj/63.7.1085
  • 25. Worrell TW, Karst G, Adamczyk D, et al. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31(12):730-740. doi:10.2519/jospt.2001.31.12.730
  • 26. Fillingim RB. Individual differences in pain responses. Curr Rheumatol Rep. 2005;7(5):342-347. doi:10.1007/s11926-005-0018-7
  • 27. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain. 2009;10(5):447-485. doi:10.1016/j.jpain.2008.12.001
  • 28. Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth. 2013;111(1):52-58. doi:10.1093/bja/aet127
  • 29. Coghill RC, McHaffie JG, Yen Y-F. Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci USA. 2003;100(14):8538-8542. doi:10.1073/pnas.1430684100
  • 30. Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73(3):431-445. doi:10.1016/s0304-3959(97)00138-3
  • 31. Porro CA, Cettolo V, Francescato MP, Baraldi P. Temporal and intensity coding of pain in human cortex. J Neurophysiol. 1998;80(6):3312-3320. doi:10.1152/jn.1998.80.6.3312
  • 32. Edwards RR. Individual differences in endogenous pain modulation as a risk factor for chronic pain. Neurology. 2005;65(3):437-443. doi:10.1212/01.wnl.0000171862.17301.84
  • 33. Lund JP, Donga R, Widmer CG, Stohler CS. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol. 1991;69(5):683-694. doi:10.1139/y91-102
  • 34. Graven-Nielsen T, Svensson P, Arendt-Nielsen L. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function. Electroencephalogr Clin Neurophysiol. 1997;105(2):156-164. doi:10.1016/s0924-980x(96)96554-6
  • 35. Farina D, Arendt-Nielsen L, Graven-Nielsen T. Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. J Appl Physiol. 2005;98(3):999-1005. doi:10.1152/japplphysiol.01059.2004

FARKLI YOĞUNLUKLARDA YAPILAN SUBMAKSİMAL İZOMETRİK KONTRAKSİYONLARIN SIRASINA BAĞLI OLARAK AĞRI ALGISINDA OLUŞAN FARKLILIK

Year 2021, Volume: 32 Issue: 1, 74 - 80, 10.04.2021
https://doi.org/10.21653/tjpr.775826

Abstract

Amaç: Önceki çalışmalar farklı yoğunluklarda yapılan submaksimal izometrik kasılmalardan sonra ağrının incelenmesi, ağrının yüksek yoğunlukta göreceli olarak yüksek olduğunu doğrulamıştır. Bununla birlikte, önceki çalışmalar, farklı yoğunlukları randomize bir sırayla kullanmaları nedeniyle sınırlıdır. Bu araştırmanın amacı, iki farklı yoğunlukta yapılan submaksimal izometrik kasılmaların sırasına bağlı olarak ağrıdaki değişikliği incelemekti..
Yöntem: Maksimum istemli kasılma (MVC) ölçüldükten sonra, iki farklı hedef yoğunluğunda alt maksimal kasılmalar yapıldı; MVC'nin% 75'i ve% 25'i. Ağrıyı ölçmek için görsel analog skala kullanıldı. İlk dönemde Grup A, MVC'nin% 25'ini ve daha sonra MVC'nin% 75'ini gerçekleştirdi. İkinci dönemde, % 75 MVC, ardından% 25 MVC gerçekleştirmiştir. Grup B'de, azami kasılma her dönemde A grubunun tersi sırada gerçekleştirildi.
Sonuçlar: Grup B'de 2. periyot boyunca ağrıda anlamlı bir azalma vardı. MVC'nin% 75'indeki VAS, MVC'nin% 25'inde önemli bir azalma gösterdi. Bununla birlikte, yoğunluk sırası düşükten yüksek yoğunluğa uygulandığında ağrıda anlamlı bir fark yoktu.
Tartışma: İki farklı yoğunluğu birleştiren bir program sırasında şiddetler aynı olsa bile, ağrının büyüklüğü sıralı uygulama sırasına bağlı olarak farklı algılanabilir.

Project Number

2020 Woosong University Academic Research Funding

References

  • 1. Dannecker EA, Koltyn KF. Pain during and within hours after exercise in healthy adults. Sports Med. 2014;44(7):921-942. doi:10.1007/s40279-014-0172-z
  • 2. Lieber RL, Friden J. Morphologic and mechanical basis of delayed-onset muscle soreness. J Am Acad Orthop Surg. 2002;10(1):67-73.
  • 3. Newham DJ, Mills KR, Quigley BM, Edwards RH. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci. 1983;64(1):55-62. doi:10.1042/cs0640055
  • 4. Nosaka K, Newton M. Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc. 2002;34(1):63-69. doi:10.1097/00005768-200201000-00011
  • 5. Lim W. The Effects of Proprioceptive Neuromuscular Facilitation and Static Stretching Performed at Various Intensities on Hamstring Flexibility. Physical Therapy Korea. 2020;27(1):30-37.
  • 6. Morgan WP. Psychological factors influencing perceived exertion. Med Sci Sports. 1973;5(2):97-103.
  • 7. Thorén P, Floras JS, Hoffmann P, Seals DR. Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc. 1990;22(4):417-428.
  • 8. Baiamonte BA, Kraemer RR, Chabreck CN, et al. Exercise-induced hypoalgesia: Pain tolerance, preference and tolerance for exercise intensity, and physiological correlates following dynamic circuit resistance exercise. J Sports Sci. 2017;35(18):1-7. doi:10.1080/02640414.2016.1239833
  • 9. Jakobsen MD, Sundstrup E, Persson R, Andersen CH, Andersen LL. Is Borg’s perceived exertion scale a useful indicator of muscular and cardiovascular load in blue-collar workers with lifting tasks? A cross-sectional workplace study. Eur J Appl Physiol. 2014;114(2):425-434. doi:10.1007/s00421-013-2782-9
  • 10. Singh AK, Nagaraj S, Palikhe RM, Neupane B. Neurodynamic sliding versus PNF stretching on hamstring flexibility in collegiate students: A comparative study. International Journal of Physical Education, Sports and Health. 2017;4(1):29-33.
  • 11. Hansberger BL, Loutsch R, Hancock C, Bonser R, Zeigel A, Baker RT. Evaluating the relationship between clinical assessments of apparent hamstring tightness: a correlational analysis. Int J Sports Phys Ther. 2019;14(2):253-263.
  • 12. Oh D, Lim W, Lee N. Concurrent Validity and Intra-Trial Reliability of a Bluetooth-Embedded Inertial Measurement Unit for Real-Time Joint Range of Motion. International Journal of Computer Science in Sport. 2019;18(3):1-11. doi:10.2478/ijcss-2019-0015
  • 13. Lim W. Sex Differences in Repeatability of Measurement for Hamstring Strength During Maximal Voluntary Contractions. Journal of Korean Physical Therapy Science. 2020;27(1):9-17.
  • 14. Lim W. Easy Method for Measuring Stretching Intensities in Real Clinical Settings and Effects of Different Stretching Intensities on Flexibility. Journal of Back and Musculoskeletal Rehabilitation. 2019;32(4):579-585. doi:10.3233/BMR-181243
  • 15. Lim W. Optimal Intensity of PNF Stretching: Maintaining the Efficacy of Stretching While Ensuring Its Safety. J Phys Ther Sci. 2018;30(8):1108-1111. doi:10.1589/jpts.30.1108
  • 16. Lim W. Changes in Pain Following the Different Intensity of the Stretching and Types of Physical Stress. Physical Therapy Korea. 2019;26(4):63-69.
  • 17. Schmitt A, Wallat D, Stangier C, Martin JA, Schlesinger-Irsch U, Boecker H. Effects of fitness level and exercise intensity on pain and mood responses. Eur J Pain. 2020;24(3):568-579. doi:10.1002/ejp.1508
  • 18. Dionne RA, Bartoshuk L, Mogil J, Witter J. Individual responder analyses for pain: does one pain scale fit all? Trends Pharmacol Sci. 2005;26(3):125-130. doi:10.1016/j.tips.2005.01.009
  • 19. Briggs M, Closs JS. A descriptive study of the use of visual analogue scales and verbal rating scales for the assessment of postoperative pain in orthopedic patients. J Pain Symptom Manage. 1999;18(6):438-446. doi:10.1016/s0885-3924(99)00092-5
  • 20. Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72(1-2):95-97. doi:10.1016/s0304-3959(97)00005-5
  • 21. Koltyn KF, Brellenthin AG, Cook DB, Sehgal N, Hillard C. Mechanisms of exercise-induced hypoalgesia. J Pain. 2014;15(12):1294-1304. doi:10.1016/j.jpain.2014.09.006
  • 22. Thornton C, Sheffield D, Baird A. A longitudinal exploration of pain tolerance and participation in contact sports. Scand J Pain. 2017;16:36-44. doi:10.1016/j.sjpain.2017.02.007
  • 23. Ayala F, Sainz de Baranda P, De Ste Croix M, Santonja F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys Ther Sport. 2011;12(4):175-181. doi:10.1016/j.ptsp.2011.02.005
  • 24. Gajdosik R, Lusin G. Hamstring muscle tightness. Reliability of an active-knee-extension test. Phys Ther. 1983;63(7):1085-1090. doi:10.1093/ptj/63.7.1085
  • 25. Worrell TW, Karst G, Adamczyk D, et al. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31(12):730-740. doi:10.2519/jospt.2001.31.12.730
  • 26. Fillingim RB. Individual differences in pain responses. Curr Rheumatol Rep. 2005;7(5):342-347. doi:10.1007/s11926-005-0018-7
  • 27. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain. 2009;10(5):447-485. doi:10.1016/j.jpain.2008.12.001
  • 28. Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth. 2013;111(1):52-58. doi:10.1093/bja/aet127
  • 29. Coghill RC, McHaffie JG, Yen Y-F. Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci USA. 2003;100(14):8538-8542. doi:10.1073/pnas.1430684100
  • 30. Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73(3):431-445. doi:10.1016/s0304-3959(97)00138-3
  • 31. Porro CA, Cettolo V, Francescato MP, Baraldi P. Temporal and intensity coding of pain in human cortex. J Neurophysiol. 1998;80(6):3312-3320. doi:10.1152/jn.1998.80.6.3312
  • 32. Edwards RR. Individual differences in endogenous pain modulation as a risk factor for chronic pain. Neurology. 2005;65(3):437-443. doi:10.1212/01.wnl.0000171862.17301.84
  • 33. Lund JP, Donga R, Widmer CG, Stohler CS. The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol. 1991;69(5):683-694. doi:10.1139/y91-102
  • 34. Graven-Nielsen T, Svensson P, Arendt-Nielsen L. Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function. Electroencephalogr Clin Neurophysiol. 1997;105(2):156-164. doi:10.1016/s0924-980x(96)96554-6
  • 35. Farina D, Arendt-Nielsen L, Graven-Nielsen T. Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. J Appl Physiol. 2005;98(3):999-1005. doi:10.1152/japplphysiol.01059.2004
There are 35 citations in total.

Details

Primary Language English
Subjects Rehabilitation
Journal Section Araştırma Makaleleri
Authors

Wootaek Lim 0000-0002-5523-6294

Project Number 2020 Woosong University Academic Research Funding
Publication Date April 10, 2021
Published in Issue Year 2021 Volume: 32 Issue: 1

Cite

APA Lim, W. (2021). DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES. Türk Fizyoterapi Ve Rehabilitasyon Dergisi, 32(1), 74-80. https://doi.org/10.21653/tjpr.775826
AMA Lim W. DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES. Turk J Physiother Rehabil. April 2021;32(1):74-80. doi:10.21653/tjpr.775826
Chicago Lim, Wootaek. “DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES”. Türk Fizyoterapi Ve Rehabilitasyon Dergisi 32, no. 1 (April 2021): 74-80. https://doi.org/10.21653/tjpr.775826.
EndNote Lim W (April 1, 2021) DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES. Türk Fizyoterapi ve Rehabilitasyon Dergisi 32 1 74–80.
IEEE W. Lim, “DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES”, Turk J Physiother Rehabil, vol. 32, no. 1, pp. 74–80, 2021, doi: 10.21653/tjpr.775826.
ISNAD Lim, Wootaek. “DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES”. Türk Fizyoterapi ve Rehabilitasyon Dergisi 32/1 (April 2021), 74-80. https://doi.org/10.21653/tjpr.775826.
JAMA Lim W. DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES. Turk J Physiother Rehabil. 2021;32:74–80.
MLA Lim, Wootaek. “DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES”. Türk Fizyoterapi Ve Rehabilitasyon Dergisi, vol. 32, no. 1, 2021, pp. 74-80, doi:10.21653/tjpr.775826.
Vancouver Lim W. DIFFERENCE IN PERCEIVED PAIN INTENSITY DEPENDING ON THE ORDER OF SUBMAXIMAL ISOMETRIC CONTRACTIONS PERFORMED AT DIFFERENT INTENSITIES. Turk J Physiother Rehabil. 2021;32(1):74-80.