Research Article
BibTex RIS Cite

ABDOMINAL BRACING MANEVRASININ FARKLI DİZ FLEKSİYON AÇILARINDA, KUADRİSEPS ZİRVE TORKU, ZİRVE TORKA ULAŞMA SÜRESİ VE KAS AKTİVASYONU ÜZERİNE ETKİSİ

Year 2022, Volume: 33 Issue: 2, 63 - 70, 20.08.2022
https://doi.org/10.21653/tjpr.980356

Abstract

Amaç: Bu çalışmanın amacı sağlıklı bireylerde abdominal bracing manevrasının (ABM) maksimal kuvvet testi sırasında kuadriseps zirve torku (ZT), zirve torka ulaşma süresi ve kas aktivasyonuna etkisini araştırmaktı.
Yöntem: Bu çalışmaya 16 sağlıklı birey (Yaş: 24,63±1,67 yıl) katılım gösterdi. Her bireye fizyoterapist tarafından ABM tekniği öğretildi. Internal oblik/transversus abdominis, vastus medialis, vastus lateralis ve rektus femoris kaslarının aktivasyonu ölçümünde yüzeysel elektromyografi kullanıldı. Maksimal izometrik test sırasında kuadriseps ZT ve zirve torka ulaşma süresi değerleri 60° ve 90° diz fleksiyon açılarında izokinetik dinamometre ile ölçüldü. İstatistiksel analizde tekrarlı ölçümler ANOVA kullanıldı.
Sonuçlar: Kuadriseps ZT değerinde, duruma göre açı etkileşimi anlamlı bulundu (F(1,15)=5,30, p=0,04). ZT değerleri her iki diz açısında da ABM ile düştü ancak düşüş 60° diz fleksiyon açısında 90°’ye göre daha fazla idi (60°: p=0,001; ES=0,68; 90°: p=0,008, ES=0,33). Kuadriseps kas aktivasyonunda da ABM ile düşüş olduğu görüldü (p=0,04).
Tartışma: Yapılan çalışma sonuçları maksimal kuadriseps kas testi sırasında hem ZT hem kas aktivasyon seviyelerinin düştüğünü göstermektedir. Araştırmacılar test sonuçlarında kuvvet aktarımının sebep olacağı yanılmayı engellemek için lumbopelvik bölgenin kompansatuar hareketlerini değerlendirmelidir.

References

  • 1. Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132-42; discussion 42-4.
  • 2. Vera-Garcia FJ, Elvira JL, Brown SH, McGill SM. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol. 2007;17(5):556-67.
  • 3. Matthijs OC, Dedrick GS, James CR, Brismee JM, Hooper TL, McGalliard MK, et al. Co-contractive activation of the superficial multifidus during volitional preemptive abdominal contraction. PM R. 2014;6(1):13-21.
  • 4. Oh JS, Cynn HS, Won JH, Kwon OY, Yi CH. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J Orthop Sports Phys Ther. 2007;37(6):320-4.
  • 5. Scott R, Yang HS, James CR, Sawyer SF, Sizer PS, Jr. Volitional Preemptive Abdominal Contraction and Upper Extremity Muscle Latencies During D1 Flexion and Scaption Shoulder Exercises. J Athl Train. 2018;53(12):1181-9.
  • 6. Harput G, Calık M, Erdem MM, Sarı N, Gunduz S, Cınar N. The effects of enhanced abdominal activation on quadriceps muscle activity levels during selected unilateral lower extremity exercises. Hum Mov Sci. 2020;70:102597.
  • 7. Kim J-S, Seok C-H, Jeon H-S. Abdominal draw-in maneuver combined with simulated weight bearing increases transversus abdominis and internal oblique thickness. Physiother Theory Pract. 2017;33(12):954-8.
  • 8. Lee S, Han S, Lee D. Comparison of abdominal muscle thickness according to feedback method used during abdominal hollowing exercise. J Phys Ther Sci. 2016;28(9):2519-21.
  • 9. Akuthota V, Nadler SF. Core strengthening. Arch Phys Med Rehabil. 2004;85(3 Suppl 1):S86-92.
  • 10. Teyhen DS, Miltenberger CE, Deiters HM, Del Toro YM, Pulliam JN, Childs JD, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain. J Orthop Sports Phys Ther. 2005;35(6):346-55.
  • 11. Grenier SG, McGill SM. Quantification of lumbar stability by using 2 different abdominal activation strategies. Arch Phys Med Rehabil. 2007;88(1):54-62.
  • 12. Haddas R, Hooper T, James CR, Sizer PS. Volitional spine stabilization during a drop vertical jump from different landing heights: implications for anterior cruciate ligament injury. J Athl Train. 2016;51(12):1003-12.
  • 13. Barbosa AC, Martins FM, Silva AF, Coelho AC, Intelangelo L, Vieira ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res. 2017;31(11):3018-23.
  • 14. Tsang SM, Lam AH, Ng MH, Ng KW, Tsui CO, Yiu B. Abdominal muscle recruitment and its effect on the activity level of the hip and posterior thigh muscles during therapeutic exercises of the hip joint. J Electromyogr Kinesiol. 2018;42:10-9.
  • 15. Chan MK, Chow KW, Lai AY, Mak NK, Sze JC, Tsang SM. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles. BMC Musculoskelet Disord. 2017;18(1):1-11.
  • 16. Tayashiki K, Maeo S, Usui S, Miyamoto N, Kanehisa H. Effect of abdominal bracing training on strength and power of trunk and lower limb muscles. Eur J Appl Physiol. 2016;116(9):1703-13.
  • 17. Tayashiki K, Hirata K, Ishida K, Kanehisa H, Miyamoto N. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure. Eur J Appl Physiol. 2017;117(6):1267-72.
  • 18. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361-74.
  • 19. Escamilla RF, McTaggart MS, Fricklas EJ, DeWitt R, Kelleher P, Taylor MK, et al. An electromyographic analysis of commercial and common abdominal exercises: implications for rehabilitation and training. J Orthop Sports Phys Ther. 2006;36(2):45-57.
  • 20. Yoon T-l, Kim K-s. Effect of craniocervical flexion on muscle activities of abdominal and cervical muscles during abdominal curl-up exercise. Physical Therapy Korea. 2013;20(4):32-9.
  • 21. Cinar-Medeni O, Harput G, Baltaci G. Angle-specific knee muscle torques of ACL-reconstructed subjects and determinants of functional tests after reconstruction. J Sports Sci. 2019;37(6):671-6.
  • 22. Baltzopoulos V, Williams JG, Brodie DA. Sources of error in isokinetic dynamometry: effects of visual feedback on maximum torque. J Orthop Sports Phys Ther. 1991;13(3):138-42.
  • 23. Kim DW, Kim TH. Effects of abdominal hollowing and abdominal bracing during side-lying hip abduction on the lateral rotation and muscle activity of the pelvis. J Exerc Rehabil. 2018;14(2):226-30.
  • 24. Tayashiki K, Takai Y, Maeo S, Kanehisa H. Intra-abdominal pressure and trunk muscular activities during abdominal bracing and hollowing. Int J Sports Med. 2016;37(02):134-43.
  • 25. Maeo S, Takahashi T, Takai Y, Kanehisa H. Trunk muscle activities during abdominal bracing: comparison among muscles and exercises. J Sports Sci Med. 2013;12(3):467.
  • 26. Cohen J. The concepts of power analysis. Statistical power analysis for the behavioral sciences. 1988;2:1-17.
  • 27. Kavcic N, Grenier S, McGill SM. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine (Phila Pa 1976). 2004;29(11):1254-65.
  • 28. McGill SM, Grenier S, Kavcic N, Cholewicki J. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353-9.
  • 29. Farrokhi S, Pollard CD, Souza RB, Chen Y-J, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J Orthop Sports Phys Ther. 2008;38(7):403-9.
  • 30. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189-98.
  • 31. Hwang J-H, Sung K-S, Yi C-H. Effects of abdominal hollowing and bracing maneuvers on hip extension strength in prone standing position. Isokinet Exerc Sci. 2020(Preprint):1-9.
  • 32. Andersen LL, Magnusson SP, Nielsen M, Haleem J, Poulsen K, Aagaard P. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther. 2006;86(5):683-97.
  • 33. Escamilla RF, Lewis C, Bell D, Bramblet G, Daffron J, Lambert S, et al. Core muscle activation during Swiss ball and traditional abdominal exercises. J Orthop Sports Phys Ther. 2010;40(5):265-76.

THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES

Year 2022, Volume: 33 Issue: 2, 63 - 70, 20.08.2022
https://doi.org/10.21653/tjpr.980356

Abstract

Purpose: The aim of the present study was to investigate the effects of abdominal bracing maneuver (ABM) on quadriceps peak torque (PT), time to peak torque (TTPT) and muscle activation levels during maximal strength testing of the quadriceps muscle in healthy individuals.
Methods: Sixteen healthy individuals (Age: 24.63±1.67 years) participated in the present study. Each participant was taught ABM technique by a physical therapist’s guidance. Surface electromyography was used to measure internal oblique/transversus abdominis, vastus medialis, vastus lateralis, and rectus femoris activation levels. Isokinetic dynamometry was used to measure quadriceps PT and TTPT during maximum isometric muscle testing at 60° and 90° of knee flexion angles with and without ABM. Repeated measures of ANOVA was performed for statistical analysis.
Results: There was a significant angle by condition interaction for quadriceps PT (F(1,15)=5.30, p=0.04). PT decreased when ABM was performed, but the decrease was greater at 600 compared to 900 of knee flexion (60°: p=0.001, ES=0.68; 90°: p=0.008, ES=0.33). Quadriceps activation levels also decreased during ABM (p=0.04) regardless of knee flexion angle.
Conclusion: The present study revealed that ABM may decrease muscle activation levels and peak torque during maximal quadriceps strength testing. Researchers should evaluate compensatory movements of the lumbopelvic region in order to prevent the error of force transfer in test results.

References

  • 1. Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132-42; discussion 42-4.
  • 2. Vera-Garcia FJ, Elvira JL, Brown SH, McGill SM. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol. 2007;17(5):556-67.
  • 3. Matthijs OC, Dedrick GS, James CR, Brismee JM, Hooper TL, McGalliard MK, et al. Co-contractive activation of the superficial multifidus during volitional preemptive abdominal contraction. PM R. 2014;6(1):13-21.
  • 4. Oh JS, Cynn HS, Won JH, Kwon OY, Yi CH. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J Orthop Sports Phys Ther. 2007;37(6):320-4.
  • 5. Scott R, Yang HS, James CR, Sawyer SF, Sizer PS, Jr. Volitional Preemptive Abdominal Contraction and Upper Extremity Muscle Latencies During D1 Flexion and Scaption Shoulder Exercises. J Athl Train. 2018;53(12):1181-9.
  • 6. Harput G, Calık M, Erdem MM, Sarı N, Gunduz S, Cınar N. The effects of enhanced abdominal activation on quadriceps muscle activity levels during selected unilateral lower extremity exercises. Hum Mov Sci. 2020;70:102597.
  • 7. Kim J-S, Seok C-H, Jeon H-S. Abdominal draw-in maneuver combined with simulated weight bearing increases transversus abdominis and internal oblique thickness. Physiother Theory Pract. 2017;33(12):954-8.
  • 8. Lee S, Han S, Lee D. Comparison of abdominal muscle thickness according to feedback method used during abdominal hollowing exercise. J Phys Ther Sci. 2016;28(9):2519-21.
  • 9. Akuthota V, Nadler SF. Core strengthening. Arch Phys Med Rehabil. 2004;85(3 Suppl 1):S86-92.
  • 10. Teyhen DS, Miltenberger CE, Deiters HM, Del Toro YM, Pulliam JN, Childs JD, et al. The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain. J Orthop Sports Phys Ther. 2005;35(6):346-55.
  • 11. Grenier SG, McGill SM. Quantification of lumbar stability by using 2 different abdominal activation strategies. Arch Phys Med Rehabil. 2007;88(1):54-62.
  • 12. Haddas R, Hooper T, James CR, Sizer PS. Volitional spine stabilization during a drop vertical jump from different landing heights: implications for anterior cruciate ligament injury. J Athl Train. 2016;51(12):1003-12.
  • 13. Barbosa AC, Martins FM, Silva AF, Coelho AC, Intelangelo L, Vieira ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res. 2017;31(11):3018-23.
  • 14. Tsang SM, Lam AH, Ng MH, Ng KW, Tsui CO, Yiu B. Abdominal muscle recruitment and its effect on the activity level of the hip and posterior thigh muscles during therapeutic exercises of the hip joint. J Electromyogr Kinesiol. 2018;42:10-9.
  • 15. Chan MK, Chow KW, Lai AY, Mak NK, Sze JC, Tsang SM. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles. BMC Musculoskelet Disord. 2017;18(1):1-11.
  • 16. Tayashiki K, Maeo S, Usui S, Miyamoto N, Kanehisa H. Effect of abdominal bracing training on strength and power of trunk and lower limb muscles. Eur J Appl Physiol. 2016;116(9):1703-13.
  • 17. Tayashiki K, Hirata K, Ishida K, Kanehisa H, Miyamoto N. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure. Eur J Appl Physiol. 2017;117(6):1267-72.
  • 18. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361-74.
  • 19. Escamilla RF, McTaggart MS, Fricklas EJ, DeWitt R, Kelleher P, Taylor MK, et al. An electromyographic analysis of commercial and common abdominal exercises: implications for rehabilitation and training. J Orthop Sports Phys Ther. 2006;36(2):45-57.
  • 20. Yoon T-l, Kim K-s. Effect of craniocervical flexion on muscle activities of abdominal and cervical muscles during abdominal curl-up exercise. Physical Therapy Korea. 2013;20(4):32-9.
  • 21. Cinar-Medeni O, Harput G, Baltaci G. Angle-specific knee muscle torques of ACL-reconstructed subjects and determinants of functional tests after reconstruction. J Sports Sci. 2019;37(6):671-6.
  • 22. Baltzopoulos V, Williams JG, Brodie DA. Sources of error in isokinetic dynamometry: effects of visual feedback on maximum torque. J Orthop Sports Phys Ther. 1991;13(3):138-42.
  • 23. Kim DW, Kim TH. Effects of abdominal hollowing and abdominal bracing during side-lying hip abduction on the lateral rotation and muscle activity of the pelvis. J Exerc Rehabil. 2018;14(2):226-30.
  • 24. Tayashiki K, Takai Y, Maeo S, Kanehisa H. Intra-abdominal pressure and trunk muscular activities during abdominal bracing and hollowing. Int J Sports Med. 2016;37(02):134-43.
  • 25. Maeo S, Takahashi T, Takai Y, Kanehisa H. Trunk muscle activities during abdominal bracing: comparison among muscles and exercises. J Sports Sci Med. 2013;12(3):467.
  • 26. Cohen J. The concepts of power analysis. Statistical power analysis for the behavioral sciences. 1988;2:1-17.
  • 27. Kavcic N, Grenier S, McGill SM. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine (Phila Pa 1976). 2004;29(11):1254-65.
  • 28. McGill SM, Grenier S, Kavcic N, Cholewicki J. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353-9.
  • 29. Farrokhi S, Pollard CD, Souza RB, Chen Y-J, Reischl S, Powers CM. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J Orthop Sports Phys Ther. 2008;38(7):403-9.
  • 30. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189-98.
  • 31. Hwang J-H, Sung K-S, Yi C-H. Effects of abdominal hollowing and bracing maneuvers on hip extension strength in prone standing position. Isokinet Exerc Sci. 2020(Preprint):1-9.
  • 32. Andersen LL, Magnusson SP, Nielsen M, Haleem J, Poulsen K, Aagaard P. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther. 2006;86(5):683-97.
  • 33. Escamilla RF, Lewis C, Bell D, Bramblet G, Daffron J, Lambert S, et al. Core muscle activation during Swiss ball and traditional abdominal exercises. J Orthop Sports Phys Ther. 2010;40(5):265-76.
There are 33 citations in total.

Details

Primary Language English
Subjects Rehabilitation
Journal Section Araştırma Makaleleri
Authors

Bensu Söğüt 0000-0001-8897-2848

Deniz Can Şahin This is me 0000-0002-7800-7400

Damla Arslan 0000-0001-6458-6520

Sercan Yıllı 0000-0003-4303-4836

Sümeyya Tarkan 0000-0002-6921-9321

Gülcan Harput 0000-0003-2298-0807

Publication Date August 20, 2022
Published in Issue Year 2022 Volume: 33 Issue: 2

Cite

APA Söğüt, B., Şahin, D. C., Arslan, D., Yıllı, S., et al. (2022). THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES. Türk Fizyoterapi Ve Rehabilitasyon Dergisi, 33(2), 63-70. https://doi.org/10.21653/tjpr.980356
AMA Söğüt B, Şahin DC, Arslan D, Yıllı S, Tarkan S, Harput G. THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES. Turk J Physiother Rehabil. August 2022;33(2):63-70. doi:10.21653/tjpr.980356
Chicago Söğüt, Bensu, Deniz Can Şahin, Damla Arslan, Sercan Yıllı, Sümeyya Tarkan, and Gülcan Harput. “THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES”. Türk Fizyoterapi Ve Rehabilitasyon Dergisi 33, no. 2 (August 2022): 63-70. https://doi.org/10.21653/tjpr.980356.
EndNote Söğüt B, Şahin DC, Arslan D, Yıllı S, Tarkan S, Harput G (August 1, 2022) THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES. Türk Fizyoterapi ve Rehabilitasyon Dergisi 33 2 63–70.
IEEE B. Söğüt, D. C. Şahin, D. Arslan, S. Yıllı, S. Tarkan, and G. Harput, “THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES”, Turk J Physiother Rehabil, vol. 33, no. 2, pp. 63–70, 2022, doi: 10.21653/tjpr.980356.
ISNAD Söğüt, Bensu et al. “THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES”. Türk Fizyoterapi ve Rehabilitasyon Dergisi 33/2 (August 2022), 63-70. https://doi.org/10.21653/tjpr.980356.
JAMA Söğüt B, Şahin DC, Arslan D, Yıllı S, Tarkan S, Harput G. THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES. Turk J Physiother Rehabil. 2022;33:63–70.
MLA Söğüt, Bensu et al. “THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES”. Türk Fizyoterapi Ve Rehabilitasyon Dergisi, vol. 33, no. 2, 2022, pp. 63-70, doi:10.21653/tjpr.980356.
Vancouver Söğüt B, Şahin DC, Arslan D, Yıllı S, Tarkan S, Harput G. THE EFFECTS OF ABDOMINAL BRACING MANEUVER ON QUADRICEPS MUSCLE TORQUE, TIME TO PEAK TORQUE AND MUSCLE ACTIVATION LEVELS AT DIFFERENT KNEE FLEXION ANGLES. Turk J Physiother Rehabil. 2022;33(2):63-70.