Advances in Carbon-Based Electrochemical Sensors: A Review on Materials and Future Perspectives
Year 2024,
Volume: 1 Issue: 1, 19 - 36, 27.12.2024
Sajjad Ali Chang
,
Aamna Balouch
,
Abdullah .
,
Rubab Mansoor
,
Nihal Deligönül
,
Haji Muhammad
,
Mustafa Tüzen
Abstract
Environmental pollution is a significant challenge to the rise of health risks globally. The electrochemical sensing of hazardous pollutants has emerged as a tool valuable for ecological monitoring due to its cost-effectiveness, high sensitivity, and rapid detection. Carbon-based materials have been studied widely and employed as both electrode materials and due modifiers to their versatility, excellent conductivity, large surface area, and ability to form materials hybrid with polymers, metals, and metal oxide. This review provides an overview of different carbon materials, such as glassy carbon, screen-printed electrodes, carbon nanotubes, and graphene highly their roles in enhancing the sensitivity and selectivity of electrochemical sensors. Additionally, their incorporation of composites hybrids and strategies functionalization is discussed to improve methods sensor performance for real-time in filed applications. Carbon materials' unique properties are essential components in efficient development and reliable sensors for environmental contaminants detection. Future research focuses direction on sustainable practices fabrication, advanced material characterization, and composite innovative designs to address pollutants emerging and extend the applicability of sensors of electrochemical in food safety and healthcare monitoring.
Ethical Statement
This study was conducted following ethical guidelines, ensuring no harm to the environment or living organisms during experimentation. All data were collected, analyzed, and reported transparently, maintaining integrity and objectivity. Proper acknowledgments were given to collaborators, and no conflicts of interest existed.
Supporting Institution
Tokat Gaziosmanpaşa Üniversitesi
Project Number
Türkiye Burslari Scholarship Program 2023/4
Thanks
Turkiye Burslari and Tubitak Fellowship Committee and Turkish Government
References
- [1] Awewomom, J., Dzeble, F., Takyi, Y. D., Ashie, W. B., Ettey, E. N. Y. O., Afua, P. E., Sackey, L.N.A., Opoku, F., & Akoto, O. (2024). Addressing global environmental pollution using environmental control techniques: a focus on environmental policy and preventive environmental management. Discover Environment, 2(1), 8.
- [2] MacRae, J. D., Abbott, M. D., & Fufaa, G. D. (2024). Cancer incidence associations with drinking water arsenic levels and disinfection methods in Maine, USA. Journal of Water and Health, jwh2024313.
- [3] Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the Total Environment, 797, 149134.
- [4] Aminzai, M. T., Yabalak, E., Kalderis, D., & Gizir, A. M. (2024). Environmental remediation of emerging contaminants using subcritical water: A review. Journal of Environmental Management, 366, 121800.
- [5] Hassan, M. H., Khan, R., & Andreescu, S. (2022). Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochemical Science Advances, 2(6), e2100184.
- [6] Potyrailo, R. A., & Mirsky, V. M. (2008). Combinatorial and high-throughput development of sensing materials: the first 10 years. Chemical Reviews, 108(2), 770-813.
- [7] Kozitsina, A. N., Svalova, T. S., Malysheva, N. N., Okhokhonin, A. V., Vidrevich, M. B., & Brainina, K. Z. (2018). Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors, 8(2), 35.
- [8] Hernandez-Vargas, G., Sosa-Hernández, J. E., Saldarriaga-Hernandez, S., Villalba-Rodríguez, A. M., Parra-Saldivar, R., & Iqbal, H. M. (2018). Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors, 8(2), 29.
- [9] Holzhacker, D., Ringleb, A., & Schlettwein, D. (2024). Impedance Spectroscopy Using Microscopic Reference Electrodes to Analyze Different Rate-Determining Steps in Aqueous Dye-Sensitized Solar Cells Using Nitroxide Radicals as Redox Mediators. Electrochimica Acta, 144582.
- [10] Gibi, C., Liu, C. H., Barton, S. C., Anandan, S., & Wu, J. J. (2024). Carbon materials for electrochemical sensing application–a mini review. Journal of the Taiwan Institute of Chemical Engineers, 154, 105071.
- [11] Mishra, S., Singh, S. P., Kumar, P., Khan, M. A., & Singh, S. (2023). Emerging electrochemical portable methodologies on carbon-based electrocatalyst for the determination of pharmaceutical and pest control pollutants: State of the art. Journal of Environmental Chemical Engineering, 11(1), 109023.
- [12] Asadian, E., Ghalkhani, M., & Shahrokhian, S. (2019). Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical, 293, 183-209.
- [13] Sabzehmeidani, Mohammad Mehdi, Sahar Mahnaee, Mehrorang Ghaedi, Hadi Heidari, and Vellaisamy AL Roy. "Carbon based materials: a review of adsorbents for inorganic and organic compounds." Materials Advances 2, no. 2 (2021): 598-627.
- [14] Egbedina, A. O., Bolade, O. P., Ewuzie, U., & Lima, E. C. (2022). Emerging trends in the application of carbon-based materials: A review. Journal of Environmental Chemical Engineering, 10(2), 107260.
- [15] Li, Z., Liu, Z., Sun, H., & Gao, C. (2015). Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chemical reviews, 115(15), 7046-7117.
- [16] El-Naggar, M. E., & Shoueir, K. (2020). Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. Journal of Environmental Chemical Engineering, 8(5), 104175.
- [17] Bowden, M. E., & Flaumenhaft, D. (1997). Chemistry is Electric! (Vol. 15). Chemical Heritage Foundation.
- [18] Dey, M. K., Satpati, A. K., & Reddy, A. V. R. (2014). Electrochemical determination of melamine on static mercury drop electrode and on gold nano particle modified carbon paste electrode. American Journal of Analytical Chemistry, 5(09), 598.
- [19] Ofoegbu, S. U., Ferreira, M. G. S., Nogueira, H. I. S., & Zheludkevich, M. (2023). Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C 2023, 9, 7.
- [20] Muzyka, K., Sun, J., Fereja, T. H., Lan, Y., Zhang, W., & Xu, G. (2019). Boron-doped diamond: current progress and challenges in view of electroanalytical applications. Analytical Methods, 11(4), 397-414.
- [21] Park, S. J. (2015). Carbon fibers (Vol. 210). Dordrecht, The Netherlands:: Springer.
- [22] Oyunbaatar, N. E., & Lee, D. W. (2024, January). Carbon Nano Tubes-Incorporated Smart Stents to Improve Mechanical Strength and Sensor Reliability. In 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 386-389). IEEE.
- [23] Sanou, A., Coulibaly, M., N’dri, S. R., Tămaș, T. L., Bizo, L., Frentiu, T., Covaci, E., Abro, K. D. M., Dablé, P. J. R., & Turdean, G. L. (2024). Raw clay material-based modified carbon paste electrodes for sensitive heavy metal detection in drinking water. Journal of Materials Science, 59(30), 13961-13977.
- [24] de Souza Vieira, L. (2022). A review on the use of glassy carbon in advanced technological applications. Carbon, 186, 282-302.
- [25] Zhu, J., Huang, X., & Song, W. (2021). Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives. ACS nano, 15(12), 18708-18741.
- [26] Nataraj, N., Chen, T. W., Akilarasan, M., Chen, S. M., Al-Ghamdi, A. A., & Elshikh, M. S. (2022). Se substituted 2D-gC3N4 modified disposable screen-printed carbon electrode substrate: A bifunctional nano-catalyst for electrochemical and absorption study of hazardous fungicide. Chemosphere, 302, 134765.
- [27] Zhang, Y. N., Niu, Q., Gu, X., Yang, N., & Zhao, G. (2019). Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale, 11(25), 11992-12014.
- [28] Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703-3727.
- [29] Bakirhan, N. K., Uslu, B., & Ozkan, S. A. (2018). The detection of pesticide in foods using electrochemical sensors. In Food safety and preservation (pp. 91-141). Academic Press.
- [30] Li, Y., Zimmerman, A. R., He, F., Chen, J., Han, L., Chen, H., Hu, X., & Gao, B. (2020). Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Science of The Total Environment, 722, 137972.
- [31] Huang, S., Qiu, H., Zhu, F., Lu, S., & Xiao, Q. (2015). Graphene quantum dots as on-off-on fluorescent probes for chromium (VI) and ascorbic acid. Microchimica Acta, 182, 1723-1731.
- [32] Zhuang, Z., Lin, H., Zhang, X., Qiu, F., & Yang, H. (2016). A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchimica Acta, 183, 2807-2814.
- [33] Xie, X., Zhou, B., Zhang, Y., Zhao, G., & Zhao, B. (2021). A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chemical Physics Letters, 767, 138355.
- [34] Li, J. (Ed.). (2009). 35 Years of Chemical Sensors-An Honorary Symposium for Professor Jiri Janata's 70th Birthday Celebration. The Electrochemical Society.
- [35] LIMA, M. D. V. (2017). Avaliação da toxicidade de suspensões de pontos quânticos em moluscos da espécie Biomphalaria glabrata (SAY, 1818) (Master's thesis, Universidade Federal de Pernambuco).
- [36] Fernández-Catalá, J., Greco, R., Navlani-García, M., Cao, W., Berenguer-Murcia, Á., & Cazorla-Amorós, D. (2022). g-C₃N₄-based direct Z-Scheme photocatalysts for environmental applications.
- [37] Guo, R., Lin, R., Yue, W., & Ma, H. (2015). Enhanced electrochemical performance of mesoporous carbon with increased pore size and decreased pore wall thickness. Electrochimica Acta, 174, 1050-1056
- [38] Chen, A. H., Yang, Y. J., Wang, S., Yang, L. M., Gao, X. Y., & Cui, D. (2023). Fabrication of modified electrode by reduced graphene oxide (rGO) and polyaniline (PANI) for enhancing azo dye decolorization in bio-electrochemical systems (BESs). Environmental Research, 231, 116042.
- [39] Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Electrochemical bisphenol A sensor based on core–shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sensors and Actuators B: Chemical, 209, 275-280.
- [40] Uskoković, V. (2021). A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends, 5, 100116.
- [41] Apaydin, D. H., Bayer, B. C., Arnault, J. C., & Eder, D. (2022). 11 Carbon-and sulfur-based materials. From Magnetic to Bioactive Materials, 287.
- [42] Hadi, M., Rouhollahi, A., Yousefi, M., Taidy, F., & Malekfar, R. (2006). Electrochemical characterization of a pyrolytic carbon film electrode and the effect of anodization. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18(8), 787-792.
- [43] Ramya, M., Kumar, P. S., Rangasamy, G., Shankar, V. U., Rajesh, G., & Nirmala, K. (2023). Experimental investigation of the electrochemical detection of sulfamethoxazole using copper oxide-MoS2 modified glassy carbon electrodes. Environmental Research, 216, 114463.
- [44] Thakur, A., & Kumar, A. (2022). Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio) sensors. Science of The Total Environment, 834, 155219.
- [45] Bounegru, A. V., & Apetrei, C. (2020). Carbonaceous nanomaterials employed in the development of electrochemical sensors based on screen-printing technique—A review. Catalysts, 10(6), 680.
- [46] Tahir, U., Shim, Y. B., Kamran, M. A., Kim, D. I., & Jeong, M. Y. (2021). Nanofabrication techniques: challenges and future prospects. Journal of Nanoscience and Nanotechnology, 21(10), 4981-5013.
- [47] Scida, K., Stege, P. W., Haby, G., Messina, G. A., & García, C. D. (2011). Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Analytica Chimica Acta, 691(1-2), 6-17.
- [48] Liu, X., Yao, Y., Ying, Y., & Ping, J. (2019). Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends in Analytical Chemistry, 115, 187-202.
- [49] David, M. E., Ion, R. M., Grigorescu, R. M., Iancu, L., Holban, A. M., Nicoara, A. I., ... & Gheboianu, A. I. (2021). Hybrid materials based on multi-walled carbon nanotubes and nanoparticles with antimicrobial properties. Nanomaterials, 11(6), 1415.
- [50] Murtada, K., Salghi, R., Rios, A., & Zougagh, M. (2020). A sensitive electrochemical sensor based on aluminium doped copper selenide nanoparticles-modified screen printed carbon electrode for determination of L-tyrosine in pharmaceutical samples. Journal of Electroanalytical Chemistry, 874, 114466.
- [51] Godja, N. C., & Munteanu, F. D. (2024). Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. Biosensors, 14(2), 67.
- [52] Rasheed, P. A., & Sandhyarani, N. (2017). Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchimica Acta, 184, 981-1000.
- [53] Tonelli, D., Scavetta, E., & Gualandi, I. (2019). Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors, 19(5), 1186.
- [54] Wang, Y., Cao, Z., Yang, Q., Guo, W., & Su, B. (2019). Optical methods for studying local electrochemical reactions with spatial resolution: a critical review. Analytica Chimica Acta, 1074, 1-15.
- [55] Tanwar, S., & Mathur, D. (2021). Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review. Journal of Solid State Electrochemistry, 25(8), 2145-2159
- [56] Korgaonkar, K., Agadi, N. P., & Seetharamappa, J. (2024). Cu2 (V2O7)-rGO Engineered Sensor for the Electrochemical Determination of Antipsychotic drug, Pimozide. Electrocatalysis, 1-12.
- [57] Wang, Y., Li, W., Li, C., Zhou, B., Zhou, Y., Jiang, L., Wen, S., & Zhou, F. (2021). Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Applied surface science, 566, 150705.
- [58] John, B. K., John, N., Mathew, S., Korah, B. K., Punnoose, M. S., & Mathew, B. (2022). Fluorescent carbon quantum dots as a novel solution and paper strip-based dual sensor for the selective detection of Cr (VI) ions. Diamond and Related Materials, 126, 109138.
- [59] Liu, Z., Ling, Q., Cai, Y., Xu, L., Su, J., Yu, K., Wu, X., Xu, J., Hu, B.,& Wang, X. (2022). Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Advances, 4(5), 1246-1262.
- [60] Liu, Y., Wang, Q., Zhang, J., Ding, J., Cheng, Y., Wang, T., Li, J., Hu, F., Yang, H. B., & Liu, B. (2022). Recent advances in carbon‐supported noble‐metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Advanced Energy Materials, 12(28), 2200928.
- [61] Hu, C., Paul, R., Dai, Q., & Dai, L. (2021). Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews, 50(21), 11785-11843.
- [62] Eder, D. (2010). Carbon nanotube− inorganic hybrids. Chemical reviews, 110(3), 1348-1385.
- [63] Ye, S., Chen, Y., Yao, X., & Zhang, J. (2021). Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere, 273, 128503.
- [64] Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., Hoang, A. T., & Shafiullah, G. M. (2022). Nanomaterials as a sustainable choice for treating wastewater. Environmental Research, 214, 113807.
- [65] Özgenç, E., Çoruh, M. K., Keleş Özgenç, E., Dönmez, A. H., & Töre, G. Y. (2024). The Properties and Functional Effects of Carbon-Based Nanofillers in Environmental Applications. In Handbook of Nanofillers (pp. 1-37). Singapore: Springer Nature Singapore.
- [66] Khan, S., Shah, S. S., Anjum, M. A. R., Khan, M. R., & Janjua, N. K. (2021). Electro-Oxidation of Ammonia over Copper Oxide Impregnated γ-Al2O3 Nanocatalysts. Coatings 2021, 11, 313.
- [67] Demir, H., Şahin, Ö., Baytar, O., & Horoz, S. (2020). Investigation of the properties of photocatalytically active Cu-doped Bi 2 S 3 nanocomposite catalysts. Journal of Materials Science: Materials in Electronics, 31, 10347-10354.
- [68] Ali, H., & Ismail, A. M. (2023). Fabrication of magnetic Fe3O4/Polypyrrole/carbon black nanocomposite for effective uptake of congo red and methylene blue dye: Adsorption investigation and mechanism. Journal of Polymers and the Environment, 31(3), 976-998.
- [69] Yang, H., He, Q., Liu, Y., Li, H., Zhang, H., & Zhai, T. (2020). On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chemical Society Reviews, 49(10), 2916-2936.
- [70] Al-Naggar, A. H., Shinde, N. M., Kim, J. S., & Mane, R. S. (2023). Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews, 474, 214864.
- [71] Ray, C., & Pal, T. (2017). Retracted Article: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. Journal of Materials Chemistry A, 5(20), 9465-9487.
- [72] Xu, J., Wang, Y., & Hu, S. (2017). Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchimica Acta, 184, 1-44.
- [73] Norizan, M. N., Moklis, M. H., Demon, S. Z. N., Halim, N. A., Samsuri, A., Mohamad, I. S., Knight, V. F., & Abdullah, N. (2020). Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC advances, 10(71), 43704-43732.
- [74] Hatchett, D. W., & Josowicz, M. (2008). Composites of intrinsically conducting polymers as sensing nanomaterials. Chemical reviews, 108(2), 746-769.
- [75] Chang, S. A., & Balouch, A. (2024). Analytical perspective of lithium extraction from brine waste: Analysis and current progress. Microchemical Journal, 110291.
- [76] Xu, Q., Li, W., Ding, L., Yang, W., Xiao, H., & Ong, W. J. (2019). Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 11(4), 1475-1504.
- [77] McEuen, P. L. (2000). Single-wall carbon nanotubes. Physics World, 13(6), 31.
- [78] Xu, M., Liang, T., Shi, M., & Chen, H. (2013). Graphene-like two-dimensional materials. Chemical reviews, 113(5), 3766-3798.
- [79] Silveira, J. F., & Muniz, A. R. (2018). Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams. Carbon, 139, 789-800.
- [80] Tung, T. T., Nine, M. J., Krebsz, M., Pasinszki, T., Coghlan, C. J., Tran, D. N., & Losic, D. (2017). Recent advances in sensing applications of graphene assemblies and their composites. Advanced Functional Materials, 27(46), 1702891.
- [81] Cheng, Y., Xu, C., Jia, L., Gale, J. D., Zhang, L., Liu, C., & Shen, P. K. (2015). Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Applied Catalysis B: Environmental, 163, 96-104.
- [82] Jampasa, S., Siangproh, W., Duangmal, K., & Chailapakul, O. (2016). Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta, 160, 113-124.
- [83] Krishnan, S. K., Singh, E., Singh, P., Meyyappan, M., & Nalwa, H. S. (2019). A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC advances, 9(16), 8778-8881.
- [84] Pramanik, S., Kumar, Y., Gupta, D., Vashistha, V. K., Kumar, A., Karmakar, P., & Das, D. K. (2021). Recent advances on structural and functional aspects of multi-dimensional nanoparticles employed for electrochemically sensing bio-molecules of medical importance. Materials Science and Engineering: B, 272, 115356.
- [85] Brunetti, B. (2024). Electrochemical Sensors and Biosensors for the Determination of Food Nutritional and Bioactive Compounds: Recent Advances. Sensors (Basel, Switzerland), 24(20), 6588.
- [86] Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment, 435, 567-572.
- [87] Singh, S., Deb, J., Kumar, S., Sarkar, U., & Sharma, S. (2022). Selective N, N-dimethylformamide vapor sensing using MoSe2/multiwalled carbon nanotube composites at room temperature. ACS Applied Nano Materials, 5(3), 3913-3924.
- [88] Fu, J., An, X., Yao, Y., Guo, Y., & Sun, X. (2019). Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors and Actuators B: Chemical, 287, 503-509.
- [89] Zhang, Z., Huang, H., Xu, J., Zhang, N., & Zhang, C. (2019). Carbon quantum dots/BiVO 4 composite with enhanced photocatalytic activity. Science China Technological Sciences, 62, 356-360.
- [90] Shang, Q., Wang, H., Kan, C., Ding, R., Li, Y., Pandeya, S., Li, Z., & Joshi, M. K. K. (2024). Exploration of the synergistic regulatory mechanism of hydroxide and fluoride modification on the photocatalytic activity of 2D g-C3N4. Catalysis Science & Technology.
- [91] Meskher, H., Ragdi, T., Thakur, A. K., Ha, S., Khelfaoui, I., Sathyamurthy, R., Singh, P., Jazi, F. S., & Lynch, I. (2024). A review on CNTs-based electrochemical sensors and biosensors: unique properties and potential applications. Critical reviews in analytical chemistry, 54(7), 2398-2421.
- [92] Zhang, T., Jin, H., Fang, Y., Guan, J., Ma, S., Pan, Y., Zhang, M., Zhu, H., Liu, X.,& Du, M. (2019). Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Materials Chemistry and Physics, 225, 433-442.
- [93] Reidell, A. C., Pazder, K. E., LeBarron, C. T., Stewart, S. A., & Hosseini, S. (2024). Modified Working Electrodes for Organic Electrosynthesis. ACS Organic & Inorganic Au.
- [94] Bao, Z. L., Zhong, H., Li, X. R., Zhang, A. R., Liu, Y. X., Chen, P., Cheng, Z., & Qian, H. Y. (2021). Core-shell Au@ Ag nanoparticles on carboxylated graphene for simultaneous electrochemical sensing of iodide and nitrite. Sensors and Actuators B: Chemical, 345, 130319.
- [95] Chen, T., Xu, J., Arsalan, M., Sheng, Q., Zheng, J., Cao, W., & Yue, T. (2019). Controlled synthesis of Au@ Pd core-shell nanocomposites and their application for electrochemical sensing of hydroquinone. Talanta, 198, 78-85.
- [96] George, J. M., Antony, A., & Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta, 185, 1-26.
- [97] Sonia, Kumari, H., Suman, Chahal, S., Devi, S., Kumar, S., Kumar, S., Kumar, P., & Kumar, A. (2023). Spinel ferrites/metal oxide nanocomposites for waste water treatment. Applied Physics A, 129(2), 91.
- [98] Wang, Y. J., Fang, B., Zhang, D., Li, A., Wilkinson, D. P., Ignaszak, A., Zhang, L., & Zhang, J. (2018). A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries. Electrochemical Energy Reviews, 1, 1-34.
- [99] Kumar, P. S., Padmalaya, G., Elavarasan, N., & Sreeja, B. S. (2023). GO/ZnO nanocomposite-as transducer platform for electrochemical sensing towards environmental applications. Chemosphere, 313, 137345.
- [100] Ponnaiah, S. K., & Prakash, P. (2020). Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor. Materials Science and Engineering: C, 113, 111010.
- [101] Ozer, T., & Henry, C. S. (2024). Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Current Topics in Medicinal Chemistry, 24(11), 952-972.
- [102] Wang, Y., Liu, A., Han, Y., & Li, T. (2020). Sensors based on conductive polymers and their composites: a review. Polymer International, 69(1), 7-17.
- [103] Hanif, F., Tahir, A., Akhtar, M., Waseem, M., Haider, S., Aboud, M. F. A., Shakir, I., Imran, M., & Warsi, M. F. (2019). Ultra-selective detection of Cd2+ and Pb2+ using glycine functionalized reduced graphene oxide/polyaniline nanocomposite electrode. Synthetic Metals, 257, 116185.
- [104] Seenivasan, R., Chang, W. J., & Gunasekaran, S. (2015). Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS applied materials & interfaces, 7(29), 15935-15943.
- [105] Thakur, A., & Kumar, A. (2023). Recent trends in nanostructured carbon-based electrochemical sensors for the detection and remediation of persistent toxic substances in real-time analysis. Materials Research Express, 10(3), 034001.
- [106] Sakthivel, K., Balasubramanian, S., Chang-Chien, G. P., Wang, S. F., Ahammad, F. N. U., Billey, W., Platero, J., Soundappan, T., & Sekhar, P. (2024). Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability. ECS Sensors Plus.
- [107] Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218.
Year 2024,
Volume: 1 Issue: 1, 19 - 36, 27.12.2024
Sajjad Ali Chang
,
Aamna Balouch
,
Abdullah .
,
Rubab Mansoor
,
Nihal Deligönül
,
Haji Muhammad
,
Mustafa Tüzen
Project Number
Türkiye Burslari Scholarship Program 2023/4
References
- [1] Awewomom, J., Dzeble, F., Takyi, Y. D., Ashie, W. B., Ettey, E. N. Y. O., Afua, P. E., Sackey, L.N.A., Opoku, F., & Akoto, O. (2024). Addressing global environmental pollution using environmental control techniques: a focus on environmental policy and preventive environmental management. Discover Environment, 2(1), 8.
- [2] MacRae, J. D., Abbott, M. D., & Fufaa, G. D. (2024). Cancer incidence associations with drinking water arsenic levels and disinfection methods in Maine, USA. Journal of Water and Health, jwh2024313.
- [3] Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the Total Environment, 797, 149134.
- [4] Aminzai, M. T., Yabalak, E., Kalderis, D., & Gizir, A. M. (2024). Environmental remediation of emerging contaminants using subcritical water: A review. Journal of Environmental Management, 366, 121800.
- [5] Hassan, M. H., Khan, R., & Andreescu, S. (2022). Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochemical Science Advances, 2(6), e2100184.
- [6] Potyrailo, R. A., & Mirsky, V. M. (2008). Combinatorial and high-throughput development of sensing materials: the first 10 years. Chemical Reviews, 108(2), 770-813.
- [7] Kozitsina, A. N., Svalova, T. S., Malysheva, N. N., Okhokhonin, A. V., Vidrevich, M. B., & Brainina, K. Z. (2018). Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors, 8(2), 35.
- [8] Hernandez-Vargas, G., Sosa-Hernández, J. E., Saldarriaga-Hernandez, S., Villalba-Rodríguez, A. M., Parra-Saldivar, R., & Iqbal, H. M. (2018). Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors, 8(2), 29.
- [9] Holzhacker, D., Ringleb, A., & Schlettwein, D. (2024). Impedance Spectroscopy Using Microscopic Reference Electrodes to Analyze Different Rate-Determining Steps in Aqueous Dye-Sensitized Solar Cells Using Nitroxide Radicals as Redox Mediators. Electrochimica Acta, 144582.
- [10] Gibi, C., Liu, C. H., Barton, S. C., Anandan, S., & Wu, J. J. (2024). Carbon materials for electrochemical sensing application–a mini review. Journal of the Taiwan Institute of Chemical Engineers, 154, 105071.
- [11] Mishra, S., Singh, S. P., Kumar, P., Khan, M. A., & Singh, S. (2023). Emerging electrochemical portable methodologies on carbon-based electrocatalyst for the determination of pharmaceutical and pest control pollutants: State of the art. Journal of Environmental Chemical Engineering, 11(1), 109023.
- [12] Asadian, E., Ghalkhani, M., & Shahrokhian, S. (2019). Electrochemical sensing based on carbon nanoparticles: A review. Sensors and Actuators B: Chemical, 293, 183-209.
- [13] Sabzehmeidani, Mohammad Mehdi, Sahar Mahnaee, Mehrorang Ghaedi, Hadi Heidari, and Vellaisamy AL Roy. "Carbon based materials: a review of adsorbents for inorganic and organic compounds." Materials Advances 2, no. 2 (2021): 598-627.
- [14] Egbedina, A. O., Bolade, O. P., Ewuzie, U., & Lima, E. C. (2022). Emerging trends in the application of carbon-based materials: A review. Journal of Environmental Chemical Engineering, 10(2), 107260.
- [15] Li, Z., Liu, Z., Sun, H., & Gao, C. (2015). Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chemical reviews, 115(15), 7046-7117.
- [16] El-Naggar, M. E., & Shoueir, K. (2020). Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. Journal of Environmental Chemical Engineering, 8(5), 104175.
- [17] Bowden, M. E., & Flaumenhaft, D. (1997). Chemistry is Electric! (Vol. 15). Chemical Heritage Foundation.
- [18] Dey, M. K., Satpati, A. K., & Reddy, A. V. R. (2014). Electrochemical determination of melamine on static mercury drop electrode and on gold nano particle modified carbon paste electrode. American Journal of Analytical Chemistry, 5(09), 598.
- [19] Ofoegbu, S. U., Ferreira, M. G. S., Nogueira, H. I. S., & Zheludkevich, M. (2023). Comparison of the Electrochemical Response of Carbon-Fiber-Reinforced Plastic (CFRP), Glassy Carbon, and Highly Ordered Pyrolytic Graphite (HOPG) in Near-Neutral Aqueous Chloride Media. C 2023, 9, 7.
- [20] Muzyka, K., Sun, J., Fereja, T. H., Lan, Y., Zhang, W., & Xu, G. (2019). Boron-doped diamond: current progress and challenges in view of electroanalytical applications. Analytical Methods, 11(4), 397-414.
- [21] Park, S. J. (2015). Carbon fibers (Vol. 210). Dordrecht, The Netherlands:: Springer.
- [22] Oyunbaatar, N. E., & Lee, D. W. (2024, January). Carbon Nano Tubes-Incorporated Smart Stents to Improve Mechanical Strength and Sensor Reliability. In 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 386-389). IEEE.
- [23] Sanou, A., Coulibaly, M., N’dri, S. R., Tămaș, T. L., Bizo, L., Frentiu, T., Covaci, E., Abro, K. D. M., Dablé, P. J. R., & Turdean, G. L. (2024). Raw clay material-based modified carbon paste electrodes for sensitive heavy metal detection in drinking water. Journal of Materials Science, 59(30), 13961-13977.
- [24] de Souza Vieira, L. (2022). A review on the use of glassy carbon in advanced technological applications. Carbon, 186, 282-302.
- [25] Zhu, J., Huang, X., & Song, W. (2021). Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives. ACS nano, 15(12), 18708-18741.
- [26] Nataraj, N., Chen, T. W., Akilarasan, M., Chen, S. M., Al-Ghamdi, A. A., & Elshikh, M. S. (2022). Se substituted 2D-gC3N4 modified disposable screen-printed carbon electrode substrate: A bifunctional nano-catalyst for electrochemical and absorption study of hazardous fungicide. Chemosphere, 302, 134765.
- [27] Zhang, Y. N., Niu, Q., Gu, X., Yang, N., & Zhao, G. (2019). Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale, 11(25), 11992-12014.
- [28] Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703-3727.
- [29] Bakirhan, N. K., Uslu, B., & Ozkan, S. A. (2018). The detection of pesticide in foods using electrochemical sensors. In Food safety and preservation (pp. 91-141). Academic Press.
- [30] Li, Y., Zimmerman, A. R., He, F., Chen, J., Han, L., Chen, H., Hu, X., & Gao, B. (2020). Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Science of The Total Environment, 722, 137972.
- [31] Huang, S., Qiu, H., Zhu, F., Lu, S., & Xiao, Q. (2015). Graphene quantum dots as on-off-on fluorescent probes for chromium (VI) and ascorbic acid. Microchimica Acta, 182, 1723-1731.
- [32] Zhuang, Z., Lin, H., Zhang, X., Qiu, F., & Yang, H. (2016). A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchimica Acta, 183, 2807-2814.
- [33] Xie, X., Zhou, B., Zhang, Y., Zhao, G., & Zhao, B. (2021). A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chemical Physics Letters, 767, 138355.
- [34] Li, J. (Ed.). (2009). 35 Years of Chemical Sensors-An Honorary Symposium for Professor Jiri Janata's 70th Birthday Celebration. The Electrochemical Society.
- [35] LIMA, M. D. V. (2017). Avaliação da toxicidade de suspensões de pontos quânticos em moluscos da espécie Biomphalaria glabrata (SAY, 1818) (Master's thesis, Universidade Federal de Pernambuco).
- [36] Fernández-Catalá, J., Greco, R., Navlani-García, M., Cao, W., Berenguer-Murcia, Á., & Cazorla-Amorós, D. (2022). g-C₃N₄-based direct Z-Scheme photocatalysts for environmental applications.
- [37] Guo, R., Lin, R., Yue, W., & Ma, H. (2015). Enhanced electrochemical performance of mesoporous carbon with increased pore size and decreased pore wall thickness. Electrochimica Acta, 174, 1050-1056
- [38] Chen, A. H., Yang, Y. J., Wang, S., Yang, L. M., Gao, X. Y., & Cui, D. (2023). Fabrication of modified electrode by reduced graphene oxide (rGO) and polyaniline (PANI) for enhancing azo dye decolorization in bio-electrochemical systems (BESs). Environmental Research, 231, 116042.
- [39] Xin, X., Sun, S., Li, H., Wang, M., & Jia, R. (2015). Electrochemical bisphenol A sensor based on core–shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sensors and Actuators B: Chemical, 209, 275-280.
- [40] Uskoković, V. (2021). A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends, 5, 100116.
- [41] Apaydin, D. H., Bayer, B. C., Arnault, J. C., & Eder, D. (2022). 11 Carbon-and sulfur-based materials. From Magnetic to Bioactive Materials, 287.
- [42] Hadi, M., Rouhollahi, A., Yousefi, M., Taidy, F., & Malekfar, R. (2006). Electrochemical characterization of a pyrolytic carbon film electrode and the effect of anodization. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18(8), 787-792.
- [43] Ramya, M., Kumar, P. S., Rangasamy, G., Shankar, V. U., Rajesh, G., & Nirmala, K. (2023). Experimental investigation of the electrochemical detection of sulfamethoxazole using copper oxide-MoS2 modified glassy carbon electrodes. Environmental Research, 216, 114463.
- [44] Thakur, A., & Kumar, A. (2022). Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio) sensors. Science of The Total Environment, 834, 155219.
- [45] Bounegru, A. V., & Apetrei, C. (2020). Carbonaceous nanomaterials employed in the development of electrochemical sensors based on screen-printing technique—A review. Catalysts, 10(6), 680.
- [46] Tahir, U., Shim, Y. B., Kamran, M. A., Kim, D. I., & Jeong, M. Y. (2021). Nanofabrication techniques: challenges and future prospects. Journal of Nanoscience and Nanotechnology, 21(10), 4981-5013.
- [47] Scida, K., Stege, P. W., Haby, G., Messina, G. A., & García, C. D. (2011). Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Analytica Chimica Acta, 691(1-2), 6-17.
- [48] Liu, X., Yao, Y., Ying, Y., & Ping, J. (2019). Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends in Analytical Chemistry, 115, 187-202.
- [49] David, M. E., Ion, R. M., Grigorescu, R. M., Iancu, L., Holban, A. M., Nicoara, A. I., ... & Gheboianu, A. I. (2021). Hybrid materials based on multi-walled carbon nanotubes and nanoparticles with antimicrobial properties. Nanomaterials, 11(6), 1415.
- [50] Murtada, K., Salghi, R., Rios, A., & Zougagh, M. (2020). A sensitive electrochemical sensor based on aluminium doped copper selenide nanoparticles-modified screen printed carbon electrode for determination of L-tyrosine in pharmaceutical samples. Journal of Electroanalytical Chemistry, 874, 114466.
- [51] Godja, N. C., & Munteanu, F. D. (2024). Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. Biosensors, 14(2), 67.
- [52] Rasheed, P. A., & Sandhyarani, N. (2017). Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchimica Acta, 184, 981-1000.
- [53] Tonelli, D., Scavetta, E., & Gualandi, I. (2019). Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors, 19(5), 1186.
- [54] Wang, Y., Cao, Z., Yang, Q., Guo, W., & Su, B. (2019). Optical methods for studying local electrochemical reactions with spatial resolution: a critical review. Analytica Chimica Acta, 1074, 1-15.
- [55] Tanwar, S., & Mathur, D. (2021). Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review. Journal of Solid State Electrochemistry, 25(8), 2145-2159
- [56] Korgaonkar, K., Agadi, N. P., & Seetharamappa, J. (2024). Cu2 (V2O7)-rGO Engineered Sensor for the Electrochemical Determination of Antipsychotic drug, Pimozide. Electrocatalysis, 1-12.
- [57] Wang, Y., Li, W., Li, C., Zhou, B., Zhou, Y., Jiang, L., Wen, S., & Zhou, F. (2021). Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Applied surface science, 566, 150705.
- [58] John, B. K., John, N., Mathew, S., Korah, B. K., Punnoose, M. S., & Mathew, B. (2022). Fluorescent carbon quantum dots as a novel solution and paper strip-based dual sensor for the selective detection of Cr (VI) ions. Diamond and Related Materials, 126, 109138.
- [59] Liu, Z., Ling, Q., Cai, Y., Xu, L., Su, J., Yu, K., Wu, X., Xu, J., Hu, B.,& Wang, X. (2022). Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Advances, 4(5), 1246-1262.
- [60] Liu, Y., Wang, Q., Zhang, J., Ding, J., Cheng, Y., Wang, T., Li, J., Hu, F., Yang, H. B., & Liu, B. (2022). Recent advances in carbon‐supported noble‐metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Advanced Energy Materials, 12(28), 2200928.
- [61] Hu, C., Paul, R., Dai, Q., & Dai, L. (2021). Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews, 50(21), 11785-11843.
- [62] Eder, D. (2010). Carbon nanotube− inorganic hybrids. Chemical reviews, 110(3), 1348-1385.
- [63] Ye, S., Chen, Y., Yao, X., & Zhang, J. (2021). Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere, 273, 128503.
- [64] Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., Hoang, A. T., & Shafiullah, G. M. (2022). Nanomaterials as a sustainable choice for treating wastewater. Environmental Research, 214, 113807.
- [65] Özgenç, E., Çoruh, M. K., Keleş Özgenç, E., Dönmez, A. H., & Töre, G. Y. (2024). The Properties and Functional Effects of Carbon-Based Nanofillers in Environmental Applications. In Handbook of Nanofillers (pp. 1-37). Singapore: Springer Nature Singapore.
- [66] Khan, S., Shah, S. S., Anjum, M. A. R., Khan, M. R., & Janjua, N. K. (2021). Electro-Oxidation of Ammonia over Copper Oxide Impregnated γ-Al2O3 Nanocatalysts. Coatings 2021, 11, 313.
- [67] Demir, H., Şahin, Ö., Baytar, O., & Horoz, S. (2020). Investigation of the properties of photocatalytically active Cu-doped Bi 2 S 3 nanocomposite catalysts. Journal of Materials Science: Materials in Electronics, 31, 10347-10354.
- [68] Ali, H., & Ismail, A. M. (2023). Fabrication of magnetic Fe3O4/Polypyrrole/carbon black nanocomposite for effective uptake of congo red and methylene blue dye: Adsorption investigation and mechanism. Journal of Polymers and the Environment, 31(3), 976-998.
- [69] Yang, H., He, Q., Liu, Y., Li, H., Zhang, H., & Zhai, T. (2020). On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chemical Society Reviews, 49(10), 2916-2936.
- [70] Al-Naggar, A. H., Shinde, N. M., Kim, J. S., & Mane, R. S. (2023). Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews, 474, 214864.
- [71] Ray, C., & Pal, T. (2017). Retracted Article: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. Journal of Materials Chemistry A, 5(20), 9465-9487.
- [72] Xu, J., Wang, Y., & Hu, S. (2017). Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchimica Acta, 184, 1-44.
- [73] Norizan, M. N., Moklis, M. H., Demon, S. Z. N., Halim, N. A., Samsuri, A., Mohamad, I. S., Knight, V. F., & Abdullah, N. (2020). Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC advances, 10(71), 43704-43732.
- [74] Hatchett, D. W., & Josowicz, M. (2008). Composites of intrinsically conducting polymers as sensing nanomaterials. Chemical reviews, 108(2), 746-769.
- [75] Chang, S. A., & Balouch, A. (2024). Analytical perspective of lithium extraction from brine waste: Analysis and current progress. Microchemical Journal, 110291.
- [76] Xu, Q., Li, W., Ding, L., Yang, W., Xiao, H., & Ong, W. J. (2019). Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 11(4), 1475-1504.
- [77] McEuen, P. L. (2000). Single-wall carbon nanotubes. Physics World, 13(6), 31.
- [78] Xu, M., Liang, T., Shi, M., & Chen, H. (2013). Graphene-like two-dimensional materials. Chemical reviews, 113(5), 3766-3798.
- [79] Silveira, J. F., & Muniz, A. R. (2018). Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams. Carbon, 139, 789-800.
- [80] Tung, T. T., Nine, M. J., Krebsz, M., Pasinszki, T., Coghlan, C. J., Tran, D. N., & Losic, D. (2017). Recent advances in sensing applications of graphene assemblies and their composites. Advanced Functional Materials, 27(46), 1702891.
- [81] Cheng, Y., Xu, C., Jia, L., Gale, J. D., Zhang, L., Liu, C., & Shen, P. K. (2015). Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Applied Catalysis B: Environmental, 163, 96-104.
- [82] Jampasa, S., Siangproh, W., Duangmal, K., & Chailapakul, O. (2016). Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta, 160, 113-124.
- [83] Krishnan, S. K., Singh, E., Singh, P., Meyyappan, M., & Nalwa, H. S. (2019). A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC advances, 9(16), 8778-8881.
- [84] Pramanik, S., Kumar, Y., Gupta, D., Vashistha, V. K., Kumar, A., Karmakar, P., & Das, D. K. (2021). Recent advances on structural and functional aspects of multi-dimensional nanoparticles employed for electrochemically sensing bio-molecules of medical importance. Materials Science and Engineering: B, 272, 115356.
- [85] Brunetti, B. (2024). Electrochemical Sensors and Biosensors for the Determination of Food Nutritional and Bioactive Compounds: Recent Advances. Sensors (Basel, Switzerland), 24(20), 6588.
- [86] Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment, 435, 567-572.
- [87] Singh, S., Deb, J., Kumar, S., Sarkar, U., & Sharma, S. (2022). Selective N, N-dimethylformamide vapor sensing using MoSe2/multiwalled carbon nanotube composites at room temperature. ACS Applied Nano Materials, 5(3), 3913-3924.
- [88] Fu, J., An, X., Yao, Y., Guo, Y., & Sun, X. (2019). Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors and Actuators B: Chemical, 287, 503-509.
- [89] Zhang, Z., Huang, H., Xu, J., Zhang, N., & Zhang, C. (2019). Carbon quantum dots/BiVO 4 composite with enhanced photocatalytic activity. Science China Technological Sciences, 62, 356-360.
- [90] Shang, Q., Wang, H., Kan, C., Ding, R., Li, Y., Pandeya, S., Li, Z., & Joshi, M. K. K. (2024). Exploration of the synergistic regulatory mechanism of hydroxide and fluoride modification on the photocatalytic activity of 2D g-C3N4. Catalysis Science & Technology.
- [91] Meskher, H., Ragdi, T., Thakur, A. K., Ha, S., Khelfaoui, I., Sathyamurthy, R., Singh, P., Jazi, F. S., & Lynch, I. (2024). A review on CNTs-based electrochemical sensors and biosensors: unique properties and potential applications. Critical reviews in analytical chemistry, 54(7), 2398-2421.
- [92] Zhang, T., Jin, H., Fang, Y., Guan, J., Ma, S., Pan, Y., Zhang, M., Zhu, H., Liu, X.,& Du, M. (2019). Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Materials Chemistry and Physics, 225, 433-442.
- [93] Reidell, A. C., Pazder, K. E., LeBarron, C. T., Stewart, S. A., & Hosseini, S. (2024). Modified Working Electrodes for Organic Electrosynthesis. ACS Organic & Inorganic Au.
- [94] Bao, Z. L., Zhong, H., Li, X. R., Zhang, A. R., Liu, Y. X., Chen, P., Cheng, Z., & Qian, H. Y. (2021). Core-shell Au@ Ag nanoparticles on carboxylated graphene for simultaneous electrochemical sensing of iodide and nitrite. Sensors and Actuators B: Chemical, 345, 130319.
- [95] Chen, T., Xu, J., Arsalan, M., Sheng, Q., Zheng, J., Cao, W., & Yue, T. (2019). Controlled synthesis of Au@ Pd core-shell nanocomposites and their application for electrochemical sensing of hydroquinone. Talanta, 198, 78-85.
- [96] George, J. M., Antony, A., & Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta, 185, 1-26.
- [97] Sonia, Kumari, H., Suman, Chahal, S., Devi, S., Kumar, S., Kumar, S., Kumar, P., & Kumar, A. (2023). Spinel ferrites/metal oxide nanocomposites for waste water treatment. Applied Physics A, 129(2), 91.
- [98] Wang, Y. J., Fang, B., Zhang, D., Li, A., Wilkinson, D. P., Ignaszak, A., Zhang, L., & Zhang, J. (2018). A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal–air batteries. Electrochemical Energy Reviews, 1, 1-34.
- [99] Kumar, P. S., Padmalaya, G., Elavarasan, N., & Sreeja, B. S. (2023). GO/ZnO nanocomposite-as transducer platform for electrochemical sensing towards environmental applications. Chemosphere, 313, 137345.
- [100] Ponnaiah, S. K., & Prakash, P. (2020). Carbon dots doped tungstic anhydride on graphene oxide nanopanels: A new picomolar-range creatinine selective enzymeless electrochemical sensor. Materials Science and Engineering: C, 113, 111010.
- [101] Ozer, T., & Henry, C. S. (2024). Recent Trends in Nanomaterial Based Electrochemical Sensors for Drug Detection: Considering Green Assessment. Current Topics in Medicinal Chemistry, 24(11), 952-972.
- [102] Wang, Y., Liu, A., Han, Y., & Li, T. (2020). Sensors based on conductive polymers and their composites: a review. Polymer International, 69(1), 7-17.
- [103] Hanif, F., Tahir, A., Akhtar, M., Waseem, M., Haider, S., Aboud, M. F. A., Shakir, I., Imran, M., & Warsi, M. F. (2019). Ultra-selective detection of Cd2+ and Pb2+ using glycine functionalized reduced graphene oxide/polyaniline nanocomposite electrode. Synthetic Metals, 257, 116185.
- [104] Seenivasan, R., Chang, W. J., & Gunasekaran, S. (2015). Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS applied materials & interfaces, 7(29), 15935-15943.
- [105] Thakur, A., & Kumar, A. (2023). Recent trends in nanostructured carbon-based electrochemical sensors for the detection and remediation of persistent toxic substances in real-time analysis. Materials Research Express, 10(3), 034001.
- [106] Sakthivel, K., Balasubramanian, S., Chang-Chien, G. P., Wang, S. F., Ahammad, F. N. U., Billey, W., Platero, J., Soundappan, T., & Sekhar, P. (2024). Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability. ECS Sensors Plus.
- [107] Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218.