Research Article
BibTex RIS Cite

Potentiometric Determination of Lead(II) Ions Based on 1,4–Naphthaquinone Derivative Molecule

Year 2024, Volume: 1 Issue: 1, 2 - 11, 27.12.2024

Abstract

Herein, the ionophore properties of a 1,4–naphthoquinone derivative molecule was investigated. For this purpose, polymer membrane ion selective sensors were prepared and their potentiometric performance characteristics were studied. The prepared sensors exhibited a very high selectivity against Pb(II) ions. The novel Pb(II)–selective potentiometric sensors had a low detection limit (LOD) of 8.38×10-7M in a wide concentration range of 1.0×10-6–1.0×10-1 M. The newly developed sensors had a wide pH working range of 4.0–10.0 and a fast response time of 5 seconds. Finally, the newly developed Pb(II)–selective potentiometric sensor was able to determine Pb(II) ions in various samples with very high recoveries.

References

  • [1] Schütz, A., Bergdahl, I. A., Ekholm, A., & Skerfving, S. (1996). Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls. Occupational and Environmental Medicine, 53(11), 736-740.
  • [2] Özbek, O., Ugur, Ö. B., Ören, S., Gürdere, M. B., & Kocabas, S. (2024). New solid state contact potentiometric sensor based on a thiosemicarbazone derivative molecule for determination of copper (II) ions in environmental samples. Polyhedron, 252, 116878.
  • [3] Mehrpour, O., Karrari, P., & Abdollahi, M. (2012). Chronic lead poisoning in Iran; a silent disease. DARU Journal of pharmaceutical Sciences, 20, 1-2.
  • [4] Gunturu, K. S., Nagarajan, P., McPhedran, P., Goodman, T. R., Hodsdon, M. E., & Strout, M. P. (2011). Ayurvedic herbal medicine and lead poisoning. Journal of Hematology & Oncology, 4, 1-6.
  • [5] Özbek, O., Gezegen, H., Cetin, A., & Isildak, Ö. (2022). A potentiometric sensor for the determination of Pb (II) ions in different environmental samples. ChemistrySelect, 7(33), e202202494.
  • [6] Golcs, Á., Horváth, V., Huszthy, P., & Tóth, T. (2018). Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore. Sensors, 18(5), 1407.
  • [7] Saper, R. B., Phillips, R. S., Sehgal, A., Khouri, N., Davis, R. B., Paquin, J., Thuppil, V., & Kales, S. N. (2008). Lead, mercury, and arsenic in US-and Indian-manufactured Ayurvedic medicines sold via the Internet. Jama, 300(8), 915-923.
  • [8] Baird C (1999). Environmental chemistry, 2nd edn. W.H. Freeman and company, New York
  • [9] Obeng-Gyasi, E. (2019). Sources of lead exposure in various countries. Reviews on environmental health, 34(1), 25-34.
  • [10] Delgado, C. F., Ullery, M. A., Jordan, M., Duclos, C., Rajagopalan, S., & Scott, K. (2018). Lead exposure and developmental disabilities in preschool-aged children. Journal of public health management and practice, 24(2), e10-e17.
  • [11] Bergdahl, I. A., Schütz, A., Gerhardsson, L., Jensen, A., & Skerfving, S. (1997). Lead concentrations in human plasma, urine and whole blood. Scandinavian journal of work, environment & health, 359-363.
  • [12] Wang, M., Hossain, F., Sulaiman, R., & Ren, X. (2019). Exposure to inorganic arsenic and lead and autism spectrum disorder in children: a systematic review and meta-analysis. Chemical research in toxicology, 32(10), 1904-1919.
  • [13] Karimooy, H. N., Mood, M. B., Hosseini, M., & Shadmanfar, S. (2010). Effects of occupational lead exposure on renal and nervous system of workers of traditional tile factories in Mashhad (northeast of Iran). Toxicology and industrial health, 26(9), 633-638.
  • [14] Vigeh, M., Yokoyama, K., Ramezanzadeh, F., Dahaghin, M., Sakai, T., Morita, Y., Kitamura, F., Sato, H., & Kobayashi, Y. (2006). Lead and other trace metals in preeclampsia: a case–control study in Tehran, Iran. Environmental research, 100(2), 268-275.
  • [15] Sarkar, O., Dey, K. K., Islam, S., & Chattopadhyay, A., (2022). Lead and Aquatic Ecosystems, Biomarkers, and Implications for Humankind. Biomarkers in Toxicology, 84(2), 1-28.
  • [16] Özbek, O., & Berkel, C. (2023). Sensor properties of thiosemicarbazones in different analytical methods. Polyhedron, 238, 116426.
  • [17] Özbek, O., & Ölcenoglu, A. (2023). The use of bis–thiadiazole and bis–oxadiazol derivatives as ionophores: a novel copper (II)–selective potentiometric electrodes. Microchemical Journal, 190, 108679.
  • [18] Özbek, O., Altunoluk, O. C., & Isildak, Ö. (2024). Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor. Analytical Sciences, 40(1), 141-149.
  • [19] Özbek, O., Kalay, E., Berkel, C., Aslan, O. N., & Tokalı, F. S. (2024). Synthesis, characterization and sensor properties of a new sulfonyl hydrazone derivative molecule: potentiometric determination of Pb (II) ions. Chemical Papers, 78(4), 2621-2633.
  • [20] Deibler, K., & Basu, P. (2013). Continuing issues with lead: recent advances in detection. European journal of inorganic chemistry, 2013(7), 1086-1096.
  • [21] Khorasani, M. Y., Langari, H., Sany, S. B. T., Rezayi, M., & Sahebkar, A. (2019). The role of curcumin and its derivatives in sensory applications. Materials Science and Engineering: C, 103, 109792.
  • [22] Sanghavi, B. J., Mobin, S. M., Mathur, P., Lahiri, G. K., & Srivastava, A. K. (2013). Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosensors and Bioelectronics, 39(1), 124-132.
  • [23] Gupta, V. K., Sethi, B., Sharma, R. A., Agarwal, S., & Bharti, A. (2013). Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. Journal of Molecular Liquids, 177, 114-118.
  • [24] Mobin, S. M., Sanghavi, B. J., Srivastava, A. K., Mathur, P., & Lahiri, G. K. (2010). Biomimetic sensor for certain phenols employing a copper (II) complex. Analytical chemistry, 82(14), 5983-5992.
  • [25] Goyal, R. N., Gupta, V. K., & Chatterjee, S. (2009). A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping. Biosensors and Bioelectronics, 24(12), 3562-3568.
  • [26] Sanghavi, B. J., Kalambate, P. K., Karna, S. P., & Srivastava, A. K. (2014). Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta, 120, 1-9.
  • [27] Isildak, Ö., & Özbek, O. (2021). Application of potentiometric sensors in real samples. Critical Reviews in Analytical Chemistry, 51(3), 218-231.
  • [28] Berkel, C., & Özbek, O. (2024). Green electrochemical sensors, their applications and greenness metrics used: A review. Electroanalysis, e202400286.
  • [29] Özbek, O., Isildak, Ö., & Isildak, I. (2021). A potentiometric biosensor for the determination of valproic acid: human blood–based study of an anti–epileptic drug. Biochemical Engineering Journal, 176, 108181.
  • [30] Özbek, O., Berkel, C., Isildak, Ö., & Isildak, I. (2022). Potentiometric urea biosensors. Clinica Chimica Acta, 524, 154-163.
  • [31] Özbek, O., & Altunoluk, O. C. (2023). Recent advances in nanoparticle–based potentiometric sensors. Advanced Sensor and Energy Materials, 100087.
  • [32] Berkil Akar, K., Mercan, E., Eran, B., & Çadırcı, B. H. (2018). Synthesis and Biological Evaluation of Novel 5,8-Dibromo-2-N-substituted-1,4-Naphthoquinone Derivatives as Potential Antimicrobial Agents. Cumhuriyet Science Journal, 39(3), 608-614.
  • [33] Özbek, O., & Altunoluk, O. C. (2024). Potentiometric determination of the local anesthetic procaine in pharmaceutical samples. Analytical Biochemistry, 695, 115657.
  • [34] Altunoluk, O. C., Özbek, O., Kalay, E., Tokalı, F. S., & Aslan, O. N. (2024). Surface characterization of barium (II)-selective potentiometric sensor based on a newly synthesized thiosemicarbazone derivative molecule. Electroanalysis, 36(7), e202300407.
  • [35] Isildak, I., Yolcu, M., Isildak, O., Demirel, N., Topal, G., & Hosgoren, H. (2004). All-Solid-State PVC Membrane Ag+-Selective Electrodes Based on Diaza-18-Crown-6 Compounds. Microchimica Acta, 144, 177-181.
  • [36] Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure and Applied Chemistry, 66(12), 2527-2536.
  • [37] Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations. Pure Appl. Chem, 72, 1851-2082.
  • [38] Çıtlakoğlu, M., & Yolcu, Z. (2023). Dinuclear Pb (II) monomer complex: Synthesis, characterization, and application of Pb (II) ion-imprinted polymer as a selective potentiometric microsensor. Polyhedron, 243, 116539.
  • [39] Golcs, Á., Horváth, V., Huszthy, P., & Tóth, T. (2018). Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore. Sensors, 18(5), 1407.
  • [40] Özbek, O. (2022). A novel potentiometric sensor for the determination of Pb (II) Ions based on a carbothioamide derivative in PVC matrix. Journal of the Turkish Chemical Society Section A: Chemistry, 9(3), 651-662.
There are 40 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Research Article
Authors

Abdulkadir Akyasan 0009-0000-6474-6483

Mehmet Emin Çakmak 0009-0008-5330-7328

Kıymet Berkil Akar 0000-0001-9993-9541

Publication Date December 27, 2024
Submission Date November 27, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

APA Akyasan, A., Çakmak, M. E., & Berkil Akar, K. (2024). Potentiometric Determination of Lead(II) Ions Based on 1,4–Naphthaquinone Derivative Molecule. Turkish Journal of Sensors and Biosensors, 1(1), 2-11.

                                                                                                                                           31746

The content of the Turkish Journal of Sensors and Biosensors is published under the Creative Commons Attribution - NonCommercial 4.0 International (CC BY-NC 4.0).