Research Article
BibTex RIS Cite

Determination of Biochemical Contents of Some Cherry and Cocktail Tomato Lines

Year 2023, , 97 - 111, 29.12.2023
https://doi.org/10.55979/tjse.1357454

Abstract

Tomato is one of the most produced vegetables worldwide, and breeding efforts related to tomatoes are continually evolving and responding to new demands. The mineral content, vitamin C, lycopene, ß-carotene levels, antioxidant activity, and phenolic and flavonoid compound amounts of cocktail and cherry-type tomatoes, red, zebra, yellow, and orange tomatoes grown under the same conditions have been determined. These compounds, which are beneficial in many ways for both human health and the development and adaptation abilities of plants, exhibit lower values of ascorbic acid (4.91-60.09 mg/100g) in light-colored tomatoes while showing higher values in dark-colored tomatoes. Flavonoid compound amounts range from 4.42-35.40 mgC/100g and are similarly higher in dark-colored tomatoes. This is also true for antioxidant capacities (0.28-0.71 mmolTE/100g), while phenolic compound amounts (30.25-80.91 mgGAE/100g) are found to be higher in cherry tomatoes, depending on size. Lycopene (0.31-18.6) and ß-carotene (0.75-6.29) levels can vary depending on color, and it has been determined that yellow-orange tomatoes are rich in ß-carotene. Based on these results, it is recommended to increase the consumption of these appealing, differently colored tomatoes and to enhance breeding efforts.

References

  • AbdElrazig, H. E., Musa, M. I., & Elsheikh, S. E. (2018). Value chain analysis for tomato production and marketing in khartoum state, sudan. Current Investigations in Agriculture and Current Research, 5(4), 715-721.
  • Ahrazem, O., Gómez-Gómez, L., Rodrigo, M. J., Avalos, J., & Limón, M. C. (2016). Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. International Journal of Molecular Sciences, 17(11), 1781. https://doi.org/10.3390/ijms17111781
  • Alhaithloul, H. A., Galal, F. H., & Seufi, A. M. (2021). Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). Plant Biology, 9, e11193.
  • Anıl, M. (2006). Antioksidan Olarak Tahıllar Hububat (2006) - Hububat Ürünleri Teknolojisi Kongre ve Sergisi. 7-8 Eylül, Gaziantep.
  • Badin, E. E., Quevedo-Leon, R., Ibarz, A., Ribotta, P. D., & Lespinard, A. R. (2021). Kinetic modeling of thermal degradation of color, lycopene, and ascorbic acid in crushed tomato. Food and Bioprocess Technology, 14(2), 324-333.
  • Baykal, N. (2020). Güney Amerika’dan sofralarımıza domatesin yolculuğu. https://bilimgenc.tubitak.gov.tr/domatesin-yolculugu. (Son erişim tarihi: 05 Kasım 2022)
  • Bener, M., Şen, F. B., Önem, A. N., Bekdeşer, B., Çelik, S. E., Lalikoglu, M., Aşcı, Y. S., Capanoglu, E., & Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 385, 132633.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free-radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Butt, M. S., Nazir, A., Sultan, M. T., & Schroën, K. (2008). Morus alba L. nature's functional tonic. Trends in Food Science & Technology, 19(10), 505-512.
  • Călinoiu, L. F., & Vodnar, D. C. (2018). Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 10(11), 1615. https://doi.org/10.3390/nu10111615
  • Campos-Lozada, G., Perez-Marroquín, X. A., Callejas-Quijada, G., Campos-Montiel, R. G., Morales-Peñaloza, A., León-López, A., & Aguirre-Álvarez, G. (2022). The effect of high-intensity ultrasound and natural oils on the extraction and antioxidant activity of lycopene from tomato (Solanum lycopersicum) waste. Antioxidants, 11(7), 1404.
  • Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56(3), 964-973.
  • Carbajal-Vázquez, V. H., Gómez-Merino, F. C., Alcántar-González, E. G., Sánchez-García, P., & Trejo-Tellez, L. I. (2022). Titanium increases the antioxidant activity and macronutrient concentration in tomato seedlings exposed to salinity in hydroponics. Plants, 11(8), 1036.
  • Cárdenas-Castro, A. P., Zamora-Gasga, V. M., Alvarez-Parrilla, E., Ruíz-Valdiviezo, V. M., Venema, K., & Sáyago-Ayerdi, S. G. (2021). In vitro gastrointestinal digestion and colonic fermentation of tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.): Phenolic compounds released and bioconverted by gut microbiota. Food Chemistry, 360, 130051.
  • Chattopadhyay, T., Hazra, P., Akhtar, S., Maurya, D., Mukherjee, A., & Roy, S. (2021). Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. Plant Cell Reports, 40(5), 767-782. https://doi.org/10.1007/s00299-020-02650-9
  • Carrillo-Rodriguez, J. C., Valdez-Torres, J. B., Villarreal-Romero, M., Murillo-Amador, B., Rueda-Puente, E., & Martinez-Espinosa, J. C. (2018). Genetic variation of fruit quality traits and their relationships with yield in tomato (Solanum lycopersicum L.) genotypes. HortScience, 53(9), 1217-1223.
  • Cassidy, A., & Minihane, A. M. (2017). The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. The American Journal of Clinical Nutrition, 105(1), 10-22.
  • Causse, M., Saliba-Colombani, V., Lecomte, L., Duffe, P., Rousselle, P., & Buret, M. (2002). "QTL analysis of fruit quality in fresh market tomato: A few chromosome regions control the variation of sensory and instrumental traits". Journal of Experimental Botany, 53(377), 2089-2098. Ćetković, G., Savatović, S., Čanadanović-Brunet, J., Djilas, S., Vulić, J., Mandić, A., & Četojević-Simin, D. (2012). Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chemistry, 133(3), 938-945. https://doi.org/10.1016/j.foodchem.2012.02.007
  • Cornelli, U. (2009). Antioxidant use in nutraceuticals. Clinics in Dermatology, 27(2), 175-194. https://doi.org/10.1016/j.clindermatol.2008.01.010
  • Coyago-Cruz, E., Corell, M., Moriana, A., Mapelli-Brahm, P., Hernanz, D., Stinco, C. M., Beltrán-Sinchiguano, E., & Melendez-Martínez, A. J. (2019). Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chemistry, 277, 480-489.
  • Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010-3014.
  • Djidonou, D., Simonne, A. H., Koch, K. E., Brecht, J. K., & Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. Hort Science, 51(12), 1618-1624.
  • Dono, G., Rambla, J. L., Frusciante, S., Granell, A., Diretto, G., & Mazzucato, A. (2020). Color mutations alter the biochemical composition in the San Marzano tomato fruit. Metabolites, 10(3), 110.
  • Durmuş, M., Yetgin, Ö., Abed, M. M., Haji, E. K., & Akcay, K. (2018). Domates bitkisi, besin içeriği ve sağlık açısından değerlendirmesi. International Journal of Life Sciences and Biotechnology, 1(2), 59-74.
  • Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, 1010-1018. https://doi.org/10.1016/j.arabjc.2011.11.011
  • Erdoğan, Ü., & K. Erdoğan, G. (2022). Yulaf (Avena sativa L.) Tanelerinin ultrasonik destekli etanolik ekstraksiyonunun toplam antioksidan kapasitesi, radikal süpürücü aktivitesi ve yağ asidi kompozisyonunun belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(2), 326-334. https://doi.org/10.18016/ksutarimdoga.vi.1111915
  • FAO (2022). Food and Agriculture Organization of the United Nations. Statistical database. http://www.fao.org/faostat/en/#data. (Son erişim tarihi: 03 Ekim 2022).
  • Felföldi, Z., Ranga, F., Roman, I. A., Sestras, A. F., Vodnar, D. C., Prohens, J., & Sestras, R. E. (2022). Analysis of physico-chemical and organoleptic fruit parameters relevant for tomato quality. Agronomy, 12(5), 1232.
  • Fernandes, I., Leça, J. M., Aguiar, R., Fernandes, T., Marques, J. C., & Cordeiro, N. (2021). Influence of crop system fruit quality, carotenoids, fatty acids and phenolic compounds in cherry tomatoes. Agricultural Research, 10, 56-65.
  • Fernandez-Panchon, M. S., Villano, D., Troncoso, A. M., & Garcia-Parrilla, M. C. (2008). Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Critical Reviews in Food Science and Nutrition, 48(7), 649-671. https://doi.org/10.1080/10408390701761845
  • Fernandez-Ruiz, V., Olives, A. I., Camara, M., Sanchez-Mata, M. C., & Torija, M. E. (2011). Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.,) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biological Trace Element Research, 141, 329339.
  • Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., Borràs, D., Plazas, M., Andújar, I., & Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. https://doi.org/10.1016/j.foodchem.2015.04.083
  • Ford, N. A., & Erdman, J. W. (2012). Are lycopene metabolites metabolically active?. Acta Biochimica Polonica, 59(1), 1-4.
  • Formisano, L., Ciriello, M., El-Nakhel, C., Poledica, M., Starace, G., Graziani, G., & Rouphael, Y. (2021). Pearl grey shading net boosts the accumulation of total carotenoids and phenolic compounds that accentuate the antioxidant activity of processing tomato. Antioxidants, 10(12), 1999.
  • Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228-265.
  • Fiedman, M., Kozukue, N., Mizuno, M., Sakakibara, H., Choi, S., Fujitake, M., & Land, K. M. (2019). The analysis of the content of biologically active phenolic compounds, flavonoids, and glycoalkaloids in harvested red, yellow, and green tomatoes, tomato leaves, and tomato stems. Current Topics in Phytochemistry, 15, 43-53.
  • Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Di Matteo, A., Fogliano, V., & Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51(5), 609-617.
  • Georgaki, E., Nifakos, K., Kotsiras, A., Fanourakis, D., Tsaniklidis, G., Delis, C., & Spiliopoulos, I. K. (2023). Comparison of nutrient composition and antioxidant activity of hydroponically grown commercial and traditional greek tomato cultivars. Horticulturae, 9(2), 163.
  • George, B., Kaur, C., Khurdiya, D. S., & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chemistry, 84(1), 45-51. https://doi.org/10.1016/S0308-8146(03)00165-1
  • George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., & Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124(4), 1603-1611.
  • Giorio, G., Yildirim, A., Stigliani, A. L., & D'Ambrosio, C. (2013). Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases. Metabolic Engineering, 20, 167-176.
  • Giuliano, G., Bartley, G. E., & Scolnik, P. A. (1993). Regulation of carotenoid biosynthesis during tomato development. The Plant Cell, 5(4), 379-387.
  • Grozeva, S., Nankar, A. N., Ganeva, D., Tringovska, I., Pasev, G., & Kostova, D. (2020). Characterization of tomato accessions for morphological, agronomic, fruit quality and virus resistance traits. Canadian Journal of Plant Science, 101(4), 476-489. https://doi.org/10.1139/cjps-2020-0030
  • Guil-Guerrero, J. L., & Rebolloso-Fuentes, M. M. (2009). Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. Journal of Food Composition and Analysis, 22(2), 123-129.
  • Ho, L. C. (1996). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. Journal of Experimental Botany, 47(3), 1239-1243.
  • Ibitoye, D. O., Akin-Idowu, P. E., & Ademoyegun, O. T. (2009). Agronomic and lycopene evaluation in tomato (Lycopersicon lycopersicum Mill.) as a function of genotype. World Journal of Agricultural Sciences, 5(5), 892-895.
  • Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I., & Dalessandro, G. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. Journal of Food Composition and Analysis, 24(4-5), 588-595.
  • Islam, M. S., Mohanta, H. C., Ismail, M. R., Rafii, M. Y., & Malek, M. A. (2012). Genetic variability and trait relationship in cherry tomato (Solanum lycopersicum L. var. cerasiforme (Dunnal) A. Gray). Bangladesh Journal of Botany, 41(2), 163-167.
  • Jing, H., Lihong, G., Xiaowei, T., & Mingchi, L. (2010). Comparison in quality characters of five different tomato cultivars. Acta Horticulturae, 856, 133-140. https://doi.org/10.17660/ActaHortic.2010.856.17
  • Kaur, D., Wani, A. A., Oberoi, D. P. S., & Sogi, D. S. (2008). Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chemistry, 108(2), 711-718.
  • Kim, D. O., & Lee, C. Y. (2004). Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Critical Reviews in Food Science and Nutrition, 44(4), 253-273. https://doi.org/10.1080/10408690490464960
  • Kondratieva, I. Y., & Golubkina, N. A. (2017). Lycopene and ß-carotene in tomato. Vegetable Crops of Russia, (4), 80-83.
  • Lavelli, V., & Torresani, M. C. (2011). Modelling the stability of lycopene-rich by-products of tomato processing. Food Chemistry, 125(2), 529-535.
  • Li, N., Wu, X., Zhuang, W., Xia, L., Chen, Y., Wu, C., Rao, Z., Du, L., Zhao, R., Yi, M., Wan, Q., & Zhou, Y. (2021). Tomato and lycopene and multiple health outcomes: umbrella review. Food Chemistry, 343, 128396. https://doi.org/10.1016/j.foodchem.2020.128396
  • Mamay, M., & Yanık, E. (2012). Şanlıurfa’da domates alanlarında domates güvesi [Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)]’nin ergin popülasyon gelişimi. Türk Entomol Bülteni, 2(3), 189-198.
  • Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747.
  • Mc Guire, R.G. (1992). Reporting of objective color measurements. Horticultural Science, 27(12), 1254-1255.
  • Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171.
  • Nagata, M., & Yamashita, I. (1992). Simple method forsimultaneous determination of chlorohyll and caretonoids in tomato fruit. Journal of Japan Food Indusrty Association, 39(10), 925-928. https://doi.org/10.136/nskkkl1962.39.925.
  • Nakilcioğlu-Taş, E., & Ötleş, S. (2020). Kinetic modelling of vitamin C losses in fresh citrus juices under different storage conditions. Anais da Academia Brasileira de Ciências, 92(2), 1-9.
  • Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 233, 352-370.
  • Nichenametla, S. N., Taruscio, T. G., Barney, D. L., & Exon, J. H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46(2), 161-183.
  • Nieder, R., Benbi, D. K., Reichl, F. X., Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Macro-and secondary elements and their role in human health. In Soil components and human health. (pp. 257-315)
  • Nisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68-82.
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, E47. https://doi.org/10.1017/jns.2016.41
  • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270-278. https://doi.org/10.4161/oxim.2.5.9498
  • Pandurangaiah, S., Sadashiva, A. T., Shivashankar, K. S., SudhakarRao, D. V., & Ravishankar, K. V. (2020). Carotenoid content in cherry tomatoes correlated to the color space values L*, a*, b*: a non-destructive method of estimation. Journal of Horticultural Sciences, 15(1), 27-34.
  • Pek, Z., Helyes, L., & Lugasi, A. (2010). Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience, 45(3), 466-468.
  • Pinela, J., Barros, L., Carvalho, A. M., & Ferreira, I. C. (2012). Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’s varieties in Northeastern Portugal homegardens. Food and Chemical Toxicology, 50(3-4), 829-834.
  • Proteggente, A. R., Pannala, A. S., Paganga, G., Buren, L. V., Wagner, E., Wiseman, S., & Rice-Evans, C. A. (2002). Düzenli olarak tüketilen meyve ve sebzelerin antioksidan aktivitesi, fenolik ve C vitamini kompozisyonlarını yansıtır. Serbest Radikal Araştirması, 36(2), 217-233.
  • Rapoport, A., Guzhova, I., Bernetti, L., Buzzini, P., Kieliszek, M., & Kot, A. M. (2021). Carotenoids and some other pigments from fungi and yeasts. Metabolites, 11(2), 92. https://doi.org/10.3390/metabo11020092
  • Renna, M., D’Imperio, M., Gonnella, M., Durante, M., Parente, A., Mita, G., Santamaria, M., & Serio, F. (2019). Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid mediterranean environment. Plants, 8(8), 273.
  • Sacks, E. J., & Francis, D. M. (2001). Genetic and environmental variation for tomato flesh color in a population of modern breeding lines. Journal of the American Society for Horticultural Science, 126(2), 221-226.
  • Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture and Environment, 1(2), 176-183.
  • Sana, B., S. Mimouna, M., Chemek, A., Ostertag, M., & Cohen, I. (2020). Messaoudi Disruption of bone zinc metabolism during postnatal development of rats after early life exposure to cadmium. International Journal of Molecular Sciences, 21(4), 1218 https://doi.org/10.3390/ijms21041218
  • Scalbert, A., Manach, C., Morand, C., Remesy, C., & Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306.
  • Serio, F., Ayala, O., Bonasia, A., & Santamaria, P. (2006). Antioxidant properties and health benefits of tomato. In Recent Progress in Medicinal Plants Search for Natural Drugs. (pp. 159-179)
  • Sharma, P., Roy, M., & Roy, B. (2021). Assessment of lycopene derived fresh and processed tomato products on human diet in eliminating health diseases. International Journal of Plant & Soil Science, 33(17), 165-172.
  • Sommer, N. G., Hirzberger, D., Paar, L., Berger, L., Ćwieka, H., Schwarze, U. Y., Herber, V., Okutan, B., Bodey, A. J., Römer, R. W., Plumhoff, B. Z., Löffler, J. F., & Weinberg, A. M. (2022). Implant degradation of low-alloyed Mg–Zn–Ca in osteoporotic, old and juvenile rats. Acta Biomaterialia, 147, 427-438. https://doi.org/10.1016/j.actbio.2022.05.041
  • Strain, J. S., & Cashman, K. D. (2009). Minerals and trace elements. In Introduction to Human Nutrition. (pp. 188-237)
  • Swain, T., & Hillis, W. E. (1959). The phenolic constituents of prunus domestica. I.-the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63-68.
  • Szabo, K., Diaconeasa, Z., Cătoi, A. F., & Vodnar, D. C. (2019). Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants, 8(8), 292. https://doi.org/10.3390/antiox8080292
  • Tigchelaar, E. C. (1986), Tomato breeding. In Breeding Vegetable Crops. (pp. 135-166)
  • Trombino, S., Cassano, R., Procopio, D., Di Gioia, M. L., Barone, E. (2021). Valorization of tomato waste as a source of carotenoids. Molecules, 26(16), 5062. https://doi.org/10.3390/molecules26165062
  • Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. https://doi.org/10.3390/nu2121231
  • Vági, E., Simándi, B., Vásárhelyine, K. P., Daood, H., Kery, Á., Doleschall, F., & Nagy, B. (2007). Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. The Journal of Supercritical Fluids, 40(2), 218-226.
  • Vega-López, B., Carvajal-Miranda, Y., Brenes-Peralta, L., Gamboa-Murillo, M., Venegas-Padilla, J., Rodríguez, G., Jiménez-Bonilla, P., & Álvarez-Valverde, V. (2022). Phytonutraceutical evaluation of five varieties of tomato (Solanum lycopersicum) during ripening and processing. LWT, 164, 113592. https://doi.org/10.1016/j.lwt.2022.113592
  • Wang, C., Wu, H., Liu, Z., Barrow, C., Dunshea, F., & Suleria, H. A. (2022). Bioaccessibility and movement of phenolic compounds from tomato (Solanum lycopersicum) during in vitro gastrointestinal digestion and colonic fermentation. Food & Function, 13(9), 4954-4966.
  • Yang, C., Jiang, X., Ma, L., Xiong, W., Zhang, S., Zhang, J., & Zhang, L. (2021). Carotenoid composition and antioxidant activities of Chinese orange‐colored tomato cultivars and the effects of thermal processing on the bioactive components. Journal of Food Science, 86(5), 1751-1765.
  • Yang, X., Zhao, Y., Yang, Y., & Ruan, Y. (2008). Isolation and characterization of immunostimulatory polysaccharide from an herb tea, Gynostemma pentaphyllum Makino. Journal of Agricultural and Food Chemistry, 56(16), 6905-6909.
  • Yesdhanulla, S., & Aparna, B. (2018). Marketing channels and price spread of tomato in chittoor district of andhra pradesh. Journal of Pharmacognosy and Phytochemistry, 7(2), 873-876.
  • Yin, M., Chen, M., Li, Z., Matsuoka, R., Xi, Y., Zhang, L., & Wang, X. (2023). The valuable and safe supplement of macro-and trace elements to the human diet: Capelin (Mallotus villosus). Journal of Food Composition and Analysis, 115, 104996. https://doi.org/10.1016/j.jfca.2022.104996
  • Zhang, Y., Ntagkas, N., Fanourakis, D., Tsaniklidis, G., Zhao, J., Cheng, R., & Li, T. (2021). The role of light intensity in mediating ascorbic acid content during postharvest tomato ripening: A transcriptomic analysis. Postharvest Biology and Technology, 180, 111622.

Bazı Kiraz ve Kokteyl Domates Hatlarının Biyokimyasal İçeriklerinin Belirlenmesi

Year 2023, , 97 - 111, 29.12.2023
https://doi.org/10.55979/tjse.1357454

Abstract

Domates dünya genelinde en çok üretilen sebezlerden biridir ve domates ile ilgili ıslah çalışmaları da gün geçtikçe yeni bir boyut kazanmakta, yeni taleplere cevap vermektedir. Çalışmada, aynı koşullarda yetiştirilmiş kokteyl ve kiraz tipli, kırmızı, kırmızı-yeşil kırçıllı, sarı ve turuncu domateslerin mineral içeriği, C vitamini, likopen, ß-karoten miktarları, antioksidan aktiviteleri, fenolik ve flavonoid madde miktarları tespit edilmiştir. Hem insan sağlığı hemde bitkilerin gelişme ve adaptasyon yetenkleri için birçok açıdan faydalı olan bu bileşiklerden askorbik asit (4.91-60.09 mg/100 g) sarı ve turuncu domateslerde daha düşük bulunurken, koyu renkli domatesler yüksek değerler göstermiştir. Flavonoid madde miktarları 4.42-35.40 mgC/100 g arasında değişmekte olup benzer şekilde koyu renkli domateslerde daha yüksektir. Bu durum antioksidan kapasiteleri (0.28-0.71 mmolTE/100 g) içinde geçerli olup fenolik madde miktarları (30.25-80.91 mgGAE/100 g) ise boyutlara bağlı olarak kiraz domateslerde daha yüksek bulunmuştur. Likopen (0.31-18.6 mg/100 g) ve ß-karoten (0.75-6.29 mg/100 g) miktarları ise renklere bağlı olarak değişebilmekte olup sarı-turuncu domateslerin ß-karoten açısından zengin olduğu belirlenmiştir. Bu sonuçlara dayanarak albenisi yüksek bu farklı renklerdeki domateslerin tüketimi ve ıslah çalışmalarının artırılması önerilmektedir.

Thanks

Bu çalışma Gülnur AYDIN tarafından hazırlanan “Bazı Kiraz ve Kokteyl Domates Hatlarının Biyokimyasal İçeriklerinin Belirlenmesi” isimli Yüksek Lisans tezinden üretilmiştir.

References

  • AbdElrazig, H. E., Musa, M. I., & Elsheikh, S. E. (2018). Value chain analysis for tomato production and marketing in khartoum state, sudan. Current Investigations in Agriculture and Current Research, 5(4), 715-721.
  • Ahrazem, O., Gómez-Gómez, L., Rodrigo, M. J., Avalos, J., & Limón, M. C. (2016). Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. International Journal of Molecular Sciences, 17(11), 1781. https://doi.org/10.3390/ijms17111781
  • Alhaithloul, H. A., Galal, F. H., & Seufi, A. M. (2021). Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). Plant Biology, 9, e11193.
  • Anıl, M. (2006). Antioksidan Olarak Tahıllar Hububat (2006) - Hububat Ürünleri Teknolojisi Kongre ve Sergisi. 7-8 Eylül, Gaziantep.
  • Badin, E. E., Quevedo-Leon, R., Ibarz, A., Ribotta, P. D., & Lespinard, A. R. (2021). Kinetic modeling of thermal degradation of color, lycopene, and ascorbic acid in crushed tomato. Food and Bioprocess Technology, 14(2), 324-333.
  • Baykal, N. (2020). Güney Amerika’dan sofralarımıza domatesin yolculuğu. https://bilimgenc.tubitak.gov.tr/domatesin-yolculugu. (Son erişim tarihi: 05 Kasım 2022)
  • Bener, M., Şen, F. B., Önem, A. N., Bekdeşer, B., Çelik, S. E., Lalikoglu, M., Aşcı, Y. S., Capanoglu, E., & Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 385, 132633.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free-radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Butt, M. S., Nazir, A., Sultan, M. T., & Schroën, K. (2008). Morus alba L. nature's functional tonic. Trends in Food Science & Technology, 19(10), 505-512.
  • Călinoiu, L. F., & Vodnar, D. C. (2018). Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 10(11), 1615. https://doi.org/10.3390/nu10111615
  • Campos-Lozada, G., Perez-Marroquín, X. A., Callejas-Quijada, G., Campos-Montiel, R. G., Morales-Peñaloza, A., León-López, A., & Aguirre-Álvarez, G. (2022). The effect of high-intensity ultrasound and natural oils on the extraction and antioxidant activity of lycopene from tomato (Solanum lycopersicum) waste. Antioxidants, 11(7), 1404.
  • Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., & De Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56(3), 964-973.
  • Carbajal-Vázquez, V. H., Gómez-Merino, F. C., Alcántar-González, E. G., Sánchez-García, P., & Trejo-Tellez, L. I. (2022). Titanium increases the antioxidant activity and macronutrient concentration in tomato seedlings exposed to salinity in hydroponics. Plants, 11(8), 1036.
  • Cárdenas-Castro, A. P., Zamora-Gasga, V. M., Alvarez-Parrilla, E., Ruíz-Valdiviezo, V. M., Venema, K., & Sáyago-Ayerdi, S. G. (2021). In vitro gastrointestinal digestion and colonic fermentation of tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.): Phenolic compounds released and bioconverted by gut microbiota. Food Chemistry, 360, 130051.
  • Chattopadhyay, T., Hazra, P., Akhtar, S., Maurya, D., Mukherjee, A., & Roy, S. (2021). Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. Plant Cell Reports, 40(5), 767-782. https://doi.org/10.1007/s00299-020-02650-9
  • Carrillo-Rodriguez, J. C., Valdez-Torres, J. B., Villarreal-Romero, M., Murillo-Amador, B., Rueda-Puente, E., & Martinez-Espinosa, J. C. (2018). Genetic variation of fruit quality traits and their relationships with yield in tomato (Solanum lycopersicum L.) genotypes. HortScience, 53(9), 1217-1223.
  • Cassidy, A., & Minihane, A. M. (2017). The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. The American Journal of Clinical Nutrition, 105(1), 10-22.
  • Causse, M., Saliba-Colombani, V., Lecomte, L., Duffe, P., Rousselle, P., & Buret, M. (2002). "QTL analysis of fruit quality in fresh market tomato: A few chromosome regions control the variation of sensory and instrumental traits". Journal of Experimental Botany, 53(377), 2089-2098. Ćetković, G., Savatović, S., Čanadanović-Brunet, J., Djilas, S., Vulić, J., Mandić, A., & Četojević-Simin, D. (2012). Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chemistry, 133(3), 938-945. https://doi.org/10.1016/j.foodchem.2012.02.007
  • Cornelli, U. (2009). Antioxidant use in nutraceuticals. Clinics in Dermatology, 27(2), 175-194. https://doi.org/10.1016/j.clindermatol.2008.01.010
  • Coyago-Cruz, E., Corell, M., Moriana, A., Mapelli-Brahm, P., Hernanz, D., Stinco, C. M., Beltrán-Sinchiguano, E., & Melendez-Martínez, A. J. (2019). Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chemistry, 277, 480-489.
  • Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010-3014.
  • Djidonou, D., Simonne, A. H., Koch, K. E., Brecht, J. K., & Zhao, X. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. Hort Science, 51(12), 1618-1624.
  • Dono, G., Rambla, J. L., Frusciante, S., Granell, A., Diretto, G., & Mazzucato, A. (2020). Color mutations alter the biochemical composition in the San Marzano tomato fruit. Metabolites, 10(3), 110.
  • Durmuş, M., Yetgin, Ö., Abed, M. M., Haji, E. K., & Akcay, K. (2018). Domates bitkisi, besin içeriği ve sağlık açısından değerlendirmesi. International Journal of Life Sciences and Biotechnology, 1(2), 59-74.
  • Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, 1010-1018. https://doi.org/10.1016/j.arabjc.2011.11.011
  • Erdoğan, Ü., & K. Erdoğan, G. (2022). Yulaf (Avena sativa L.) Tanelerinin ultrasonik destekli etanolik ekstraksiyonunun toplam antioksidan kapasitesi, radikal süpürücü aktivitesi ve yağ asidi kompozisyonunun belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(2), 326-334. https://doi.org/10.18016/ksutarimdoga.vi.1111915
  • FAO (2022). Food and Agriculture Organization of the United Nations. Statistical database. http://www.fao.org/faostat/en/#data. (Son erişim tarihi: 03 Ekim 2022).
  • Felföldi, Z., Ranga, F., Roman, I. A., Sestras, A. F., Vodnar, D. C., Prohens, J., & Sestras, R. E. (2022). Analysis of physico-chemical and organoleptic fruit parameters relevant for tomato quality. Agronomy, 12(5), 1232.
  • Fernandes, I., Leça, J. M., Aguiar, R., Fernandes, T., Marques, J. C., & Cordeiro, N. (2021). Influence of crop system fruit quality, carotenoids, fatty acids and phenolic compounds in cherry tomatoes. Agricultural Research, 10, 56-65.
  • Fernandez-Panchon, M. S., Villano, D., Troncoso, A. M., & Garcia-Parrilla, M. C. (2008). Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Critical Reviews in Food Science and Nutrition, 48(7), 649-671. https://doi.org/10.1080/10408390701761845
  • Fernandez-Ruiz, V., Olives, A. I., Camara, M., Sanchez-Mata, M. C., & Torija, M. E. (2011). Mineral and trace elements content in 30 accessions of tomato fruits (Solanum lycopersicum L.,) and wild relatives (Solanum pimpinellifolium L., Solanum cheesmaniae L. Riley, and Solanum habrochaites S. Knapp & D.M. Spooner). Biological Trace Element Research, 141, 329339.
  • Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., Borràs, D., Plazas, M., Andújar, I., & Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. https://doi.org/10.1016/j.foodchem.2015.04.083
  • Ford, N. A., & Erdman, J. W. (2012). Are lycopene metabolites metabolically active?. Acta Biochimica Polonica, 59(1), 1-4.
  • Formisano, L., Ciriello, M., El-Nakhel, C., Poledica, M., Starace, G., Graziani, G., & Rouphael, Y. (2021). Pearl grey shading net boosts the accumulation of total carotenoids and phenolic compounds that accentuate the antioxidant activity of processing tomato. Antioxidants, 10(12), 1999.
  • Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228-265.
  • Fiedman, M., Kozukue, N., Mizuno, M., Sakakibara, H., Choi, S., Fujitake, M., & Land, K. M. (2019). The analysis of the content of biologically active phenolic compounds, flavonoids, and glycoalkaloids in harvested red, yellow, and green tomatoes, tomato leaves, and tomato stems. Current Topics in Phytochemistry, 15, 43-53.
  • Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Di Matteo, A., Fogliano, V., & Pellegrini, N. (2007). Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51(5), 609-617.
  • Georgaki, E., Nifakos, K., Kotsiras, A., Fanourakis, D., Tsaniklidis, G., Delis, C., & Spiliopoulos, I. K. (2023). Comparison of nutrient composition and antioxidant activity of hydroponically grown commercial and traditional greek tomato cultivars. Horticulturae, 9(2), 163.
  • George, B., Kaur, C., Khurdiya, D. S., & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chemistry, 84(1), 45-51. https://doi.org/10.1016/S0308-8146(03)00165-1
  • George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., & Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124(4), 1603-1611.
  • Giorio, G., Yildirim, A., Stigliani, A. L., & D'Ambrosio, C. (2013). Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases. Metabolic Engineering, 20, 167-176.
  • Giuliano, G., Bartley, G. E., & Scolnik, P. A. (1993). Regulation of carotenoid biosynthesis during tomato development. The Plant Cell, 5(4), 379-387.
  • Grozeva, S., Nankar, A. N., Ganeva, D., Tringovska, I., Pasev, G., & Kostova, D. (2020). Characterization of tomato accessions for morphological, agronomic, fruit quality and virus resistance traits. Canadian Journal of Plant Science, 101(4), 476-489. https://doi.org/10.1139/cjps-2020-0030
  • Guil-Guerrero, J. L., & Rebolloso-Fuentes, M. M. (2009). Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. Journal of Food Composition and Analysis, 22(2), 123-129.
  • Ho, L. C. (1996). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. Journal of Experimental Botany, 47(3), 1239-1243.
  • Ibitoye, D. O., Akin-Idowu, P. E., & Ademoyegun, O. T. (2009). Agronomic and lycopene evaluation in tomato (Lycopersicon lycopersicum Mill.) as a function of genotype. World Journal of Agricultural Sciences, 5(5), 892-895.
  • Ilahy, R., Hdider, C., Lenucci, M. S., Tlili, I., & Dalessandro, G. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. Journal of Food Composition and Analysis, 24(4-5), 588-595.
  • Islam, M. S., Mohanta, H. C., Ismail, M. R., Rafii, M. Y., & Malek, M. A. (2012). Genetic variability and trait relationship in cherry tomato (Solanum lycopersicum L. var. cerasiforme (Dunnal) A. Gray). Bangladesh Journal of Botany, 41(2), 163-167.
  • Jing, H., Lihong, G., Xiaowei, T., & Mingchi, L. (2010). Comparison in quality characters of five different tomato cultivars. Acta Horticulturae, 856, 133-140. https://doi.org/10.17660/ActaHortic.2010.856.17
  • Kaur, D., Wani, A. A., Oberoi, D. P. S., & Sogi, D. S. (2008). Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chemistry, 108(2), 711-718.
  • Kim, D. O., & Lee, C. Y. (2004). Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Critical Reviews in Food Science and Nutrition, 44(4), 253-273. https://doi.org/10.1080/10408690490464960
  • Kondratieva, I. Y., & Golubkina, N. A. (2017). Lycopene and ß-carotene in tomato. Vegetable Crops of Russia, (4), 80-83.
  • Lavelli, V., & Torresani, M. C. (2011). Modelling the stability of lycopene-rich by-products of tomato processing. Food Chemistry, 125(2), 529-535.
  • Li, N., Wu, X., Zhuang, W., Xia, L., Chen, Y., Wu, C., Rao, Z., Du, L., Zhao, R., Yi, M., Wan, Q., & Zhou, Y. (2021). Tomato and lycopene and multiple health outcomes: umbrella review. Food Chemistry, 343, 128396. https://doi.org/10.1016/j.foodchem.2020.128396
  • Mamay, M., & Yanık, E. (2012). Şanlıurfa’da domates alanlarında domates güvesi [Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)]’nin ergin popülasyon gelişimi. Türk Entomol Bülteni, 2(3), 189-198.
  • Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747.
  • Mc Guire, R.G. (1992). Reporting of objective color measurements. Horticultural Science, 27(12), 1254-1255.
  • Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171.
  • Nagata, M., & Yamashita, I. (1992). Simple method forsimultaneous determination of chlorohyll and caretonoids in tomato fruit. Journal of Japan Food Indusrty Association, 39(10), 925-928. https://doi.org/10.136/nskkkl1962.39.925.
  • Nakilcioğlu-Taş, E., & Ötleş, S. (2020). Kinetic modelling of vitamin C losses in fresh citrus juices under different storage conditions. Anais da Academia Brasileira de Ciências, 92(2), 1-9.
  • Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 233, 352-370.
  • Nichenametla, S. N., Taruscio, T. G., Barney, D. L., & Exon, J. H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46(2), 161-183.
  • Nieder, R., Benbi, D. K., Reichl, F. X., Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Macro-and secondary elements and their role in human health. In Soil components and human health. (pp. 257-315)
  • Nisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68-82.
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, E47. https://doi.org/10.1017/jns.2016.41
  • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270-278. https://doi.org/10.4161/oxim.2.5.9498
  • Pandurangaiah, S., Sadashiva, A. T., Shivashankar, K. S., SudhakarRao, D. V., & Ravishankar, K. V. (2020). Carotenoid content in cherry tomatoes correlated to the color space values L*, a*, b*: a non-destructive method of estimation. Journal of Horticultural Sciences, 15(1), 27-34.
  • Pek, Z., Helyes, L., & Lugasi, A. (2010). Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience, 45(3), 466-468.
  • Pinela, J., Barros, L., Carvalho, A. M., & Ferreira, I. C. (2012). Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’s varieties in Northeastern Portugal homegardens. Food and Chemical Toxicology, 50(3-4), 829-834.
  • Proteggente, A. R., Pannala, A. S., Paganga, G., Buren, L. V., Wagner, E., Wiseman, S., & Rice-Evans, C. A. (2002). Düzenli olarak tüketilen meyve ve sebzelerin antioksidan aktivitesi, fenolik ve C vitamini kompozisyonlarını yansıtır. Serbest Radikal Araştirması, 36(2), 217-233.
  • Rapoport, A., Guzhova, I., Bernetti, L., Buzzini, P., Kieliszek, M., & Kot, A. M. (2021). Carotenoids and some other pigments from fungi and yeasts. Metabolites, 11(2), 92. https://doi.org/10.3390/metabo11020092
  • Renna, M., D’Imperio, M., Gonnella, M., Durante, M., Parente, A., Mita, G., Santamaria, M., & Serio, F. (2019). Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid mediterranean environment. Plants, 8(8), 273.
  • Sacks, E. J., & Francis, D. M. (2001). Genetic and environmental variation for tomato flesh color in a population of modern breeding lines. Journal of the American Society for Horticultural Science, 126(2), 221-226.
  • Sainju, U. M., Dris, R., & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture and Environment, 1(2), 176-183.
  • Sana, B., S. Mimouna, M., Chemek, A., Ostertag, M., & Cohen, I. (2020). Messaoudi Disruption of bone zinc metabolism during postnatal development of rats after early life exposure to cadmium. International Journal of Molecular Sciences, 21(4), 1218 https://doi.org/10.3390/ijms21041218
  • Scalbert, A., Manach, C., Morand, C., Remesy, C., & Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306.
  • Serio, F., Ayala, O., Bonasia, A., & Santamaria, P. (2006). Antioxidant properties and health benefits of tomato. In Recent Progress in Medicinal Plants Search for Natural Drugs. (pp. 159-179)
  • Sharma, P., Roy, M., & Roy, B. (2021). Assessment of lycopene derived fresh and processed tomato products on human diet in eliminating health diseases. International Journal of Plant & Soil Science, 33(17), 165-172.
  • Sommer, N. G., Hirzberger, D., Paar, L., Berger, L., Ćwieka, H., Schwarze, U. Y., Herber, V., Okutan, B., Bodey, A. J., Römer, R. W., Plumhoff, B. Z., Löffler, J. F., & Weinberg, A. M. (2022). Implant degradation of low-alloyed Mg–Zn–Ca in osteoporotic, old and juvenile rats. Acta Biomaterialia, 147, 427-438. https://doi.org/10.1016/j.actbio.2022.05.041
  • Strain, J. S., & Cashman, K. D. (2009). Minerals and trace elements. In Introduction to Human Nutrition. (pp. 188-237)
  • Swain, T., & Hillis, W. E. (1959). The phenolic constituents of prunus domestica. I.-the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63-68.
  • Szabo, K., Diaconeasa, Z., Cătoi, A. F., & Vodnar, D. C. (2019). Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants, 8(8), 292. https://doi.org/10.3390/antiox8080292
  • Tigchelaar, E. C. (1986), Tomato breeding. In Breeding Vegetable Crops. (pp. 135-166)
  • Trombino, S., Cassano, R., Procopio, D., Di Gioia, M. L., Barone, E. (2021). Valorization of tomato waste as a source of carotenoids. Molecules, 26(16), 5062. https://doi.org/10.3390/molecules26165062
  • Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. https://doi.org/10.3390/nu2121231
  • Vági, E., Simándi, B., Vásárhelyine, K. P., Daood, H., Kery, Á., Doleschall, F., & Nagy, B. (2007). Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. The Journal of Supercritical Fluids, 40(2), 218-226.
  • Vega-López, B., Carvajal-Miranda, Y., Brenes-Peralta, L., Gamboa-Murillo, M., Venegas-Padilla, J., Rodríguez, G., Jiménez-Bonilla, P., & Álvarez-Valverde, V. (2022). Phytonutraceutical evaluation of five varieties of tomato (Solanum lycopersicum) during ripening and processing. LWT, 164, 113592. https://doi.org/10.1016/j.lwt.2022.113592
  • Wang, C., Wu, H., Liu, Z., Barrow, C., Dunshea, F., & Suleria, H. A. (2022). Bioaccessibility and movement of phenolic compounds from tomato (Solanum lycopersicum) during in vitro gastrointestinal digestion and colonic fermentation. Food & Function, 13(9), 4954-4966.
  • Yang, C., Jiang, X., Ma, L., Xiong, W., Zhang, S., Zhang, J., & Zhang, L. (2021). Carotenoid composition and antioxidant activities of Chinese orange‐colored tomato cultivars and the effects of thermal processing on the bioactive components. Journal of Food Science, 86(5), 1751-1765.
  • Yang, X., Zhao, Y., Yang, Y., & Ruan, Y. (2008). Isolation and characterization of immunostimulatory polysaccharide from an herb tea, Gynostemma pentaphyllum Makino. Journal of Agricultural and Food Chemistry, 56(16), 6905-6909.
  • Yesdhanulla, S., & Aparna, B. (2018). Marketing channels and price spread of tomato in chittoor district of andhra pradesh. Journal of Pharmacognosy and Phytochemistry, 7(2), 873-876.
  • Yin, M., Chen, M., Li, Z., Matsuoka, R., Xi, Y., Zhang, L., & Wang, X. (2023). The valuable and safe supplement of macro-and trace elements to the human diet: Capelin (Mallotus villosus). Journal of Food Composition and Analysis, 115, 104996. https://doi.org/10.1016/j.jfca.2022.104996
  • Zhang, Y., Ntagkas, N., Fanourakis, D., Tsaniklidis, G., Zhao, J., Cheng, R., & Li, T. (2021). The role of light intensity in mediating ascorbic acid content during postharvest tomato ripening: A transcriptomic analysis. Postharvest Biology and Technology, 180, 111622.
There are 93 citations in total.

Details

Primary Language Turkish
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Gülnur Aydın 0000-0002-5612-6812

Hakan Aktaş 0000-0001-8280-5758

Early Pub Date December 29, 2023
Publication Date December 29, 2023
Published in Issue Year 2023

Cite

APA Aydın, G., & Aktaş, H. (2023). Bazı Kiraz ve Kokteyl Domates Hatlarının Biyokimyasal İçeriklerinin Belirlenmesi. Turkish Journal of Science and Engineering, 5(2), 97-111. https://doi.org/10.55979/tjse.1357454