Review
BibTex RIS Cite

Evaluation of Pedotransfer Functions (PTFs) for Some Soil Physical Properties

Year 2019, Volume: 1 Issue: 1, 28 - 34, 31.12.2019

Abstract



In recent years, studies
on the estimation of another soil property using data on some soil properties
(Pedotransfer Functions, PTFs), are widely used. In this context, increased
interest in pedotransfer functions (PTFs) has been observed. In this study, the
pedotransfer functions created for some soil physical properties (hydraulic
properties, bulk density, penetration resistance, and aggregate stability) were
investigated. Textural fractions (% sand, silt, and clay) and organic matter
were determined as commonly used soil properties in the estimation models. In
addition, the inclusion of the bulk density increased the accuracy of
estimation in models of hydraulic conductivity and penetration resistance.
Previous research had determined that a high coefficient of determination (R2)
and low root means square error (RMSE) were used as important indicators
in assessing the usability of the estimation models obtained. The estimated accuracy level of the models can be affected by parameters such as soil properties, the climate of the region, methods of analysis, homogeneity of data.

References

  • Abbasi, Y., Ghanbarian-Alavijeh, B., Liaghat, A. M. ve Shorafa, M. (2011). Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Pedosphere, 21(2), 230-237.
  • Abdelbaki, A.M. (2018). Evaluation of pedotransfer functions for predicting soil bulk density for US soils. Ain Shams Engineering Journal.
  • Adhikary, P.P., Chakraborty, D., Kalra, N., Sachdev, C.B. ve Patra, A.K. (2008). Pedotransfer functions for predicting the hydraulic properties of Indian soils. Australian Journal of Soil Research, 46, 476–484
  • Alexander, E.B. (1980). Bulk densities of California soils in relation to other soil properties. Soil Science Society of America Journal. 44, 689–692.
  • Al-Qinna, M.I. ve Jaber, S.M. (2013). Predicting soil bulk density using advanced pedotransfer functions in an arid environment. T. Asabe, 56, 963–976.
  • Alvarez-Acosta, C., Lascano, R.J. ve Stroosnijder, L. (2012). Test of the rosetta pedotransfer function for saturated hydraulic conductivity. Open Journal of Soil Sciences, 2, 203-212.
  • Annabi, M., Raclot, D., Bahri, H., Bailly, J. S., Gomez, C. ve Le Bissonnais, Y. (2017). Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia, Catena, 153, 157-167.
  • Aziz, S. A.ve Karim, S. M. (2016). The effect of some soil physical and chemical properties on soil aggregate stability in different locations in sulaimani and halabja governorate, Open Journal of Soil Science, 6(04), 81.
  • Bayat, H. ve Zadeh, G.E. (2018). Estimation of the soil water retention curve using penetration resistance curve models. Computers and Electronics in Agriculture, 144, 329-343.
  • Bayat, H., Neyshaburı, M. R., Hajabbasi, M. A., Mahboubi, A. A. ve Mosaddeghi, M. R. (2008). Comparing neural networks, linear and nonlinear regression techniques to model penetration resistance. Turkish Journal of Agriculture and Forestry, 32(5), 425-433.
  • Benites, V.M., Machado, P.L.O.A., Fidalgo, E.C.C., Coelho, M.R.ve Madari, B.E. (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139, 90–97.
  • Bennie, A.T.P. ve Burger, R.D.T. (1988). Penetration resistance of fine sandy apedal soils as affected by relative bulk density, water content and texture. South African Journal of Plant and Soil, 5(1), 5-10.
  • Botula, Y.D. (2013). Indirect methods to predict hydrophysical properties of soils of Lower Congo. Ghent University, Gent, p 236
  • Bradford, J. M. (1986). Penetrability. Clude, A. (ED.), Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (463-478). Soil Science Society of America, American Society of Agronomy, 1188p, America
  • Brahim, N., Bernoux,M.ve Gallali, T. (2012). Pedotransfer functions to estimate soil bulk density for Northern Africa: Tunisia case. Journal of Arid Environments, 81, 77–83. Brooks, R.J. ve Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Paper 3. Fort Collins: Colorado State University.
  • Busscher, W.J. (1990). Adjustment of flat- tipped penetrometer resistance data to a common water content. http://naldc. nal.usda. gov/download/18014/PDF (Erişim: 8 kasım 2019)
  • Cemek, B., Meral, R., Apan, M.ve Merdum, H. (2004). Pedotransfer funtion fort the estimation of the field capacity and permanent wilting point. Pakistan Journa of Biological Science, 7(4), 535-541.
  • Cosby, B.J., Hornberger, G.M., Clapp, R.B. ve Ginn, T.R. (1984). A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 682–690.
  • Costantini, A. (1995). Relationships between cone penetration resistance, bulk density, and moisture content in uncultivated, repacked, and cultivated hardsetting and non-hardsetting soils from the coastal lowlands of south-east Queensland.
  • Dexter, A.R. (2004). Soil physical quality part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120, 201–214.
  • De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J.ve Muys, B. (2005). Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal, 69, 500–10.
  • Duiker, S.W., Rhoton, F.E., Torrent, J., Smeck, N.E.ve Lal, R. (2003). Iron (hydr) oxide crystallinity effects on soil aggregation, Soil Science Society of America Journal, 67(2), 606-611.
  • Filho, J.T., Feltran, C.T.M., José Francirlei de Oliveira, J.F. ve Almeida, E. (2012). Modelling of soil penetration resistance for an oxisol under no-tillage. Revista Brasileira de Ciência do Solo, 36, 89-95.
  • Ghorbani Dashtaki, S.H. ve Homaee, M. (2004). Using geometric mean particle diameter to derive point and continuous pedotransfer functions. In Whrle, N. and Scheurer, M. (eds.) EuroSoil. September 4–12, 2004. Freiburg, Germany.10(30): 1–10.
  • Giarola, N.F.B., Da Silva, A.P. ve Imhoff, S. (2002). Relac¸o˜es entre propriedades fı´sicas e caracterı´sticas de solos da Regia˜o Sul do Brasil. Revista Brasileira de Ciencia do Solo, 26, 885–893.
  • Grewal, K. S., Buchan, G. D. ve Tonkin, P. J. (1990). Estimation of field capacity and wilting point of some New Zealand soils from their saturation percentages. New Zealand Journal of Crop and Horticultural Science, 18(4), 241-246.
  • Grunwald, S., Lowery, B., Rooney, D.J.ve McSweeney, K. (2001). Profilo cone penetrometer data used to distinguish between soil materials. Soil & Tillage Research, 62, 27-40.
  • Gülser, C.ve Candemir, F. (2014). Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian Journal of Soil Science, 3, 77-81.
  • Han, G.Z., Zhang, G.L., Gong, Z.T.ve Wang, G.F. (2012). Pedotransfer functions for estimating soil bulk density in China. Soil Science, 177, 158–164.
  • Hernanz, J.L., Peixoto, H., Cerisola, C. ve Sánchez-Girón, V. (2000). An empirical model to predict soil bulk density profiles in field conditions using penetration resistance, moisture content and soil depth. Journal of Terramechanics, 37(4), 167-184.
  • Heuscher, S.A., Brandt, C.C.ve Jardine, P.M. (2005). Using soil physical and chemical properties to estimate bulk density. Soil Science Society of America Journa, 69, 51–56.
  • Hollis, J.M., Hannam, J.ve Bellamy, P.H. (2012). Empirically-derived pedotransfer functions for predicting bulk density in European soils. European Journal of Soil Science, 63, 96–109.
  • Honeysett, J.L.ve Ratkowsky, D.A. (1989). The use of ignition loss to estimate bulk density of forest soils. J. Soil Science. 40, 299–308.
  • Hutson, J.L.ve Wagenet, R.J. (1992). Leaching estimation and chemistry model. department of soil. Crop and Atmospheric Sciences Research series no. 92.3, New York, Cornell University.
  • Igwe, C. A., Zarei, M.ve Stahr, K. (2013). Stability of aggregates of some weathered soils in south-eastern nigeria in relation to their geochemical properties. Journal of Earth System Science, 122(5), 1283-1294.
  • Kaur R, Kumar, S. ve Gurung ,H. A. (2002). Pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Australian Journal of Soil Research, (40), 847–57.
  • Keller, T.ve Hakansson, I.( 2010). Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154, 398–406.
  • Landsberg, J.D., Miller, R.E., Anderson, H.W. ve Tepp, J.S. (2003). Bulk density and soil resistance to penetration as affected by commercial thinning in northeastern washington. Res. Pap. PNW-RP-551. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Lin, H., Zhang, W. ve Yu, H. (2014). Hydropedology: linking dynamic soil properties with soil survey data. ın application of soil physics in environmental analyses (pp. 23-50). Springer International Publishing.
  • Manrique, L.A., Jones, C.A.ve Dyke, P.T. (1991). Predicting soil water retention characteristics from soil physical and chemical properties. Communications in Soil Science and Plant Analysis, 22, 1847–1860
  • Marashi, M., Torkashvand, A. M., Ahmadi, A.ve Esfandyari, M. (2017). "Estimation of soil aggregate stability ındices using artificial neural network‎ and multiple linear regression models", Spanish Journal of Soil Science, 7(2).
  • Medeiros, J. C., Cooper, M., Dalla Rosa, J., Grimaldi, M. ve Coquet, Y. (2014). Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Revista Brasileira de Ciência do Solo, 38(3), 730-743.
  • Minasny, B. ve Hartemink, A.E. (2011). Predicting soil properties in the tropics. Earth-Science Reviews, 106, 52–62
  • Mohawesh, O.E. (2013). Assessment of pedotransfer functions (PTFs) in predicting soil hydraulic properties under arid and semi arid environments. Jordan Journal of Agricultural Sciences, 9(4).
  • Nanko, K., Ugawa, S., Hashimoto, S., Imaya, A., Kobayashi, M., Sakai, H., Ishizuka, S., Miura, S., Tanaka, N., Takahashi, M.ve Kaneko, S. (2014). A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma ,213, 36–45.
  • Özdemir, N., Ekberli, İ. ve Durmuş, Ö.T.K. (2018). Bazı toprak özellikleri ile kütle yoğunluğunun tahmini için pedotransfer modeller. Toprak Bilimi ve Bitki Besleme Dergisi, 6(1), 46-51.
  • Pachepsky, Y. A. ve van Genuchten, M. T. (2011). Pedotransfer functions. Encyclopedia of Agrophysics, 556-561.
  • Perie, C. ve Ouimet, R. (2007). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315–25. Rajkai, K., Kabos, S. ve Van Genuchten, M. Th.(2004). Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil & Tillage Research, 79, 145–152.
  • Rawls, W.J. (1983). Estimating soil bulk density fromparticle size analysis and organic matter content. Soil Science, 135, 123–125.
  • Rawls, W.J.ve Brakensiek, D.L. (1989). Estimation of soil water retention and hydraulic properties. In: S. Morel, Editor, unsaturated flow in hydrologic modeling. theory and pratice, Kluwer academic publishers.
  • Rawls,W.J., Nemes, A.ve Pachepsky, Ya. (2004). Effect of soil organic carbon on soil hydraulicproperties. In: Pachepsky, Ya., Rawls,W.J. (Eds.), Development of Pedotransfer Functions in Soil Hydrology. Developments in Soil Science vol. 30. Elsevier, New York, pp. 95–114.
  • Rivera, J. I. ve Bonilla, C. A. (2020). Predicting soil aggregate stability using readily available soil properties and machine learning techniques. Catena, 187, 104408.
  • Saidi, D., Hamel, Z.ve Ababou, A. (2015). Using pedotransfer functions to assess aggregate stability: application to the lower cheliff soils, Algeria, International Journal of Plant & Soil Science, 8, 1-10.
  • Santos, F.L., Jesus, V.A.M. ve Valente, Domingos Sárvio Magalhães, D.S.M. (2012). Modeling of soil penetration resistance using statistical analyses and artificial neural networks. Acta Scientiarum. Agronomy, 34, 2, 219-224.
  • Saxton, K. E., Rawls, W. J., Romberger, J.S. ve Papendick, R. I. (1986). Estimating generalized soil water characteristics from texture. Soil Science Society of America Journa, 50: 1031–1036.
  • Stock, O. ve Downes, N.K. (2008). Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range. Soil and Tillage Research, 99(2), 191-201.
  • Sevastas, S., Gasparatos, D., Botsis, D., Siarkos, I., Diamantaras, K. I. ve Bilas, G. (2018). Predicting bulk density using pedotransfer functions for soils in the Upper Anthemountas basin, Greece. Geoderma Regional, 14, e00169.
  • Shalmani, A. A., Shahrestani, M. S., Asadi, H.ve Bagheri, F. (2010). Comparison of regression pedotransfer functions and artificial neural networks for soil aggregate stability simulation. 19th Wold Congress of Soil Science, Soil Solutions for a Changing World. 1-6 August, Brisbane, Australia.
  • Schwertmann, U. ve Taylor, R.M. (1977). Iron oxides. In: Dixon JB (ed) Minerals in soil environments. Soil Science Society of America, Madison. 948 p
  • Šimanský, V., Kravka, M. ve Jonczak, J.(2017). Stability of soil aggregates ın loamy soils of slovakıa. Journal of Elementology, 22(2), 581-592.
  • Six, J., Elliott, E.T.ve Paustian, K.(2000). Soil structure and soil organic matter: II. A normalized stability ındex and the effect of mineralogy, Soil Science Society of America Journal, 64, 1042 – 1049.
  • Suleiman, A. A. ve Ritchie, J. T. (2001). Estimating saturated hydraulic conductivity from soil porosity. Transactions of the ASAE, 44(2), 235.
  • Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kolli, R.ve Astover, A. (2011). Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma 163, 74–82.
  • Şeker, C. (1999). Penetrasyon direnci ile bazı toprak özellikleri arasındaki ilişkiler. Turkish Journal of Agriculture and Forestry 23, (3), 583-588.
  • To, J.ve Kay, B.D. (2005). Variation in penetrometer resistance with soil properties: the contribution of effective stress and ımplications for pedotransfer functions. Geoderma, 126(3-4), 261-276.
  • Turgut, B., Aksakal, E.L., Öztaş, T.ve Babagil, G.E. (2008). Penetrasyon direncine etki eden toprak özelliklerine ait etki katsayılarının çoklu regresyon analizi ile belirlenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 39(1), 115-121.
  • Turgut, B., Öztaş, T., 2012. Penetrasyon direncini etkileyen bazı toprak özelliklerinin yersel değişiminin belirlenmesi. Tarım Bilimleri Dergisi, 18, 115-125.
  • Tranter, G., Minasny, B., McBratney, A.B., Murphy, B., McKenzie, N.J., Grundy, M. ve Brough, D., 2007. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Management, 23, 437–443.
  • Umer, M. I.ve Rajab, S.M. (2012). Correlation between aggregate stability and microbiological activity in two russian soil types, Eurasian Journal of Soil Science, 1(1), 45-50.
  • Unger, P.W.ve Jones, O.R. (1998). Long-Term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil & Tillage Research, 45(1), 39-57.
  • Unguraşu, A.N., Anel, F.D.ve Florian Stătescu, F. (2012). Estimatıon of soil hydraulic parameters with the help of rosetta program. Lucrări Ştiinţifice– vol. 55, seria Agronomie.
  • Usta, A., Yilmaz, M.ve Kocamanoglu, Y.O. (2018). Estimation of wet soil aggregate stability by some soil properties in a semi-arid ecosystem, Fresenius EnvironmentaL Bulletin, 27(12 A), 9026-9032.
  • Van Genuchten, M.Th. (1980). A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44:892-898.
  • Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., et al. ve Schaap, M.G. (2017). Pedotransfer functions in Earth system science: challenges and perspectives. Reviews of Geophysics, 55(4), 1199-1256.
  • Vereecken, H., Maes, J., Feyen, J. ve Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science,148: 389–403.
  • Wösten, J. H. M., Lilly, A., Nemes, A. ve Le Bas, C. (1999). Development and use of adatabase of hydraulic properties of European soils. Geoderma. 90: 169–185.
  • Wösten, J.H.M., Pachepsky, Y. ve Rawls, W.J. (2001). Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 123–150.
  • Whalley, W.R., To, J., Kay, B.D. ve Whitmore, A.P. (2007). Prediction of the penetrometer resistance of soils with models with few parameters. Geoderma 137, 370–377.
  • Yakupoğlu, T., Saltalı, K. ve Karagöktaş, M. (2012). Narlı ovası'nda toprak aşınabilirliğinin pedotransfer yaklaşım ile tahminlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 15(2), 59-67.
  • Yakupoğlu, T., Şişman, A. Ö. ve Gündoğan, R. (2015). Toprakların agregat stabilitesi değerlerinin yapay sinir ağları ile tahminlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 2(2), 83-92.
  • Yakupoğlu, T., Şişman, A.Ö., Karagöktaş, M. ve Demir, Ö.F. (2013). Toprakların doygun koşullardaki hidrolik iletkenlik değerlerinin pedotransfer eşitliklerle tahminlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 8 (1), 84-89.
  • Yang, X.ve You, X. (2013). Estimating parameters of van genuchten model for soil water retention curve by ıntelligent algorithms. Applied Mathematics & Information Sciences, 7, No. 5, 1977-1983.
  • Yeşilsoy, M. Ş. ve Aydın, M. (1993). Toprak Fiziği. Çukurova Üniversitesi. Ziraat Fakültesi Ders Kitabı, 124.
  • Yılmaz, K., Çelik, I., Kapur, S. ve Ryan, J. (2005). Clay minerals, Ca/Mg Ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity and soil erosion in doutheastern Turkey. Turkish journal of Agriculture and Forestry, 29(1), 29-37.
  • Zacharias, S. ve Wessolek, G. (2007). Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Science Society of America Journal, 71: 43–50.

Pedotransfer Fonksiyonların (PTFs) Bazı Toprak Fiziksel Özellikleri için Değerlendirilmesi

Year 2019, Volume: 1 Issue: 1, 28 - 34, 31.12.2019

Abstract

Son yıllarda, bazı toprak özelliklerine ilişkin veriler kullanılarak bir başka toprak özelliğinin tahmin edilmesine yönelik çalışmaların sıklaştığı ve bu kapsamda pedotransfer fonksiyonlara (PTFs) olan ilginin arttığı gözlenmektedir. Bu çalışmada, bazı toprak fiziksel özellikleri (hidrolik özellikler, hacim ağırlığı, penetrasyon direnci ve agregat stabilitesi) için oluşturulan pedotransfer fonksiyonlar değerlendirilmiştir. Söz konusu tahmin modellerinde, tekstürel fraksiyonlar (% kum, silt ve kil) ve organik madde ortak olarak kullanılan toprak özellikleri olarak belirlenmiştir. Ayrıca hidrolik iletkenlik ve penetrasyon direnci tahminlerinde, hacim ağırlığının modellere dahil edilmesinin doğruluk düzeyini arttırdığı gözlenmiştir. Geçmişte yürütülen araştırmalar; elde edilen tahmin modellerinin kullanılabilirliğinin değerlendirilmesinde, yüksek belirleme katsayısı (R2) ve düşük hata kareler ortalaması karekökünü (RMSE) önemli göstergeler olarak bildirmektedir. Modellerin tahmin doğruluk düzeyi; toprak özellikleri, bölgenin iklimi, analiz yöntemleri, verilerin homojenliği gibi parametrelerden etkilenebilmektedir.

References

  • Abbasi, Y., Ghanbarian-Alavijeh, B., Liaghat, A. M. ve Shorafa, M. (2011). Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline-alkali soils of Iran. Pedosphere, 21(2), 230-237.
  • Abdelbaki, A.M. (2018). Evaluation of pedotransfer functions for predicting soil bulk density for US soils. Ain Shams Engineering Journal.
  • Adhikary, P.P., Chakraborty, D., Kalra, N., Sachdev, C.B. ve Patra, A.K. (2008). Pedotransfer functions for predicting the hydraulic properties of Indian soils. Australian Journal of Soil Research, 46, 476–484
  • Alexander, E.B. (1980). Bulk densities of California soils in relation to other soil properties. Soil Science Society of America Journal. 44, 689–692.
  • Al-Qinna, M.I. ve Jaber, S.M. (2013). Predicting soil bulk density using advanced pedotransfer functions in an arid environment. T. Asabe, 56, 963–976.
  • Alvarez-Acosta, C., Lascano, R.J. ve Stroosnijder, L. (2012). Test of the rosetta pedotransfer function for saturated hydraulic conductivity. Open Journal of Soil Sciences, 2, 203-212.
  • Annabi, M., Raclot, D., Bahri, H., Bailly, J. S., Gomez, C. ve Le Bissonnais, Y. (2017). Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia, Catena, 153, 157-167.
  • Aziz, S. A.ve Karim, S. M. (2016). The effect of some soil physical and chemical properties on soil aggregate stability in different locations in sulaimani and halabja governorate, Open Journal of Soil Science, 6(04), 81.
  • Bayat, H. ve Zadeh, G.E. (2018). Estimation of the soil water retention curve using penetration resistance curve models. Computers and Electronics in Agriculture, 144, 329-343.
  • Bayat, H., Neyshaburı, M. R., Hajabbasi, M. A., Mahboubi, A. A. ve Mosaddeghi, M. R. (2008). Comparing neural networks, linear and nonlinear regression techniques to model penetration resistance. Turkish Journal of Agriculture and Forestry, 32(5), 425-433.
  • Benites, V.M., Machado, P.L.O.A., Fidalgo, E.C.C., Coelho, M.R.ve Madari, B.E. (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139, 90–97.
  • Bennie, A.T.P. ve Burger, R.D.T. (1988). Penetration resistance of fine sandy apedal soils as affected by relative bulk density, water content and texture. South African Journal of Plant and Soil, 5(1), 5-10.
  • Botula, Y.D. (2013). Indirect methods to predict hydrophysical properties of soils of Lower Congo. Ghent University, Gent, p 236
  • Bradford, J. M. (1986). Penetrability. Clude, A. (ED.), Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (463-478). Soil Science Society of America, American Society of Agronomy, 1188p, America
  • Brahim, N., Bernoux,M.ve Gallali, T. (2012). Pedotransfer functions to estimate soil bulk density for Northern Africa: Tunisia case. Journal of Arid Environments, 81, 77–83. Brooks, R.J. ve Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Paper 3. Fort Collins: Colorado State University.
  • Busscher, W.J. (1990). Adjustment of flat- tipped penetrometer resistance data to a common water content. http://naldc. nal.usda. gov/download/18014/PDF (Erişim: 8 kasım 2019)
  • Cemek, B., Meral, R., Apan, M.ve Merdum, H. (2004). Pedotransfer funtion fort the estimation of the field capacity and permanent wilting point. Pakistan Journa of Biological Science, 7(4), 535-541.
  • Cosby, B.J., Hornberger, G.M., Clapp, R.B. ve Ginn, T.R. (1984). A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 682–690.
  • Costantini, A. (1995). Relationships between cone penetration resistance, bulk density, and moisture content in uncultivated, repacked, and cultivated hardsetting and non-hardsetting soils from the coastal lowlands of south-east Queensland.
  • Dexter, A.R. (2004). Soil physical quality part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120, 201–214.
  • De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J.ve Muys, B. (2005). Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal, 69, 500–10.
  • Duiker, S.W., Rhoton, F.E., Torrent, J., Smeck, N.E.ve Lal, R. (2003). Iron (hydr) oxide crystallinity effects on soil aggregation, Soil Science Society of America Journal, 67(2), 606-611.
  • Filho, J.T., Feltran, C.T.M., José Francirlei de Oliveira, J.F. ve Almeida, E. (2012). Modelling of soil penetration resistance for an oxisol under no-tillage. Revista Brasileira de Ciência do Solo, 36, 89-95.
  • Ghorbani Dashtaki, S.H. ve Homaee, M. (2004). Using geometric mean particle diameter to derive point and continuous pedotransfer functions. In Whrle, N. and Scheurer, M. (eds.) EuroSoil. September 4–12, 2004. Freiburg, Germany.10(30): 1–10.
  • Giarola, N.F.B., Da Silva, A.P. ve Imhoff, S. (2002). Relac¸o˜es entre propriedades fı´sicas e caracterı´sticas de solos da Regia˜o Sul do Brasil. Revista Brasileira de Ciencia do Solo, 26, 885–893.
  • Grewal, K. S., Buchan, G. D. ve Tonkin, P. J. (1990). Estimation of field capacity and wilting point of some New Zealand soils from their saturation percentages. New Zealand Journal of Crop and Horticultural Science, 18(4), 241-246.
  • Grunwald, S., Lowery, B., Rooney, D.J.ve McSweeney, K. (2001). Profilo cone penetrometer data used to distinguish between soil materials. Soil & Tillage Research, 62, 27-40.
  • Gülser, C.ve Candemir, F. (2014). Using soil moisture constants and physical properties to predict saturated hydraulic conductivity. Eurasian Journal of Soil Science, 3, 77-81.
  • Han, G.Z., Zhang, G.L., Gong, Z.T.ve Wang, G.F. (2012). Pedotransfer functions for estimating soil bulk density in China. Soil Science, 177, 158–164.
  • Hernanz, J.L., Peixoto, H., Cerisola, C. ve Sánchez-Girón, V. (2000). An empirical model to predict soil bulk density profiles in field conditions using penetration resistance, moisture content and soil depth. Journal of Terramechanics, 37(4), 167-184.
  • Heuscher, S.A., Brandt, C.C.ve Jardine, P.M. (2005). Using soil physical and chemical properties to estimate bulk density. Soil Science Society of America Journa, 69, 51–56.
  • Hollis, J.M., Hannam, J.ve Bellamy, P.H. (2012). Empirically-derived pedotransfer functions for predicting bulk density in European soils. European Journal of Soil Science, 63, 96–109.
  • Honeysett, J.L.ve Ratkowsky, D.A. (1989). The use of ignition loss to estimate bulk density of forest soils. J. Soil Science. 40, 299–308.
  • Hutson, J.L.ve Wagenet, R.J. (1992). Leaching estimation and chemistry model. department of soil. Crop and Atmospheric Sciences Research series no. 92.3, New York, Cornell University.
  • Igwe, C. A., Zarei, M.ve Stahr, K. (2013). Stability of aggregates of some weathered soils in south-eastern nigeria in relation to their geochemical properties. Journal of Earth System Science, 122(5), 1283-1294.
  • Kaur R, Kumar, S. ve Gurung ,H. A. (2002). Pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Australian Journal of Soil Research, (40), 847–57.
  • Keller, T.ve Hakansson, I.( 2010). Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154, 398–406.
  • Landsberg, J.D., Miller, R.E., Anderson, H.W. ve Tepp, J.S. (2003). Bulk density and soil resistance to penetration as affected by commercial thinning in northeastern washington. Res. Pap. PNW-RP-551. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Lin, H., Zhang, W. ve Yu, H. (2014). Hydropedology: linking dynamic soil properties with soil survey data. ın application of soil physics in environmental analyses (pp. 23-50). Springer International Publishing.
  • Manrique, L.A., Jones, C.A.ve Dyke, P.T. (1991). Predicting soil water retention characteristics from soil physical and chemical properties. Communications in Soil Science and Plant Analysis, 22, 1847–1860
  • Marashi, M., Torkashvand, A. M., Ahmadi, A.ve Esfandyari, M. (2017). "Estimation of soil aggregate stability ındices using artificial neural network‎ and multiple linear regression models", Spanish Journal of Soil Science, 7(2).
  • Medeiros, J. C., Cooper, M., Dalla Rosa, J., Grimaldi, M. ve Coquet, Y. (2014). Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region. Revista Brasileira de Ciência do Solo, 38(3), 730-743.
  • Minasny, B. ve Hartemink, A.E. (2011). Predicting soil properties in the tropics. Earth-Science Reviews, 106, 52–62
  • Mohawesh, O.E. (2013). Assessment of pedotransfer functions (PTFs) in predicting soil hydraulic properties under arid and semi arid environments. Jordan Journal of Agricultural Sciences, 9(4).
  • Nanko, K., Ugawa, S., Hashimoto, S., Imaya, A., Kobayashi, M., Sakai, H., Ishizuka, S., Miura, S., Tanaka, N., Takahashi, M.ve Kaneko, S. (2014). A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma ,213, 36–45.
  • Özdemir, N., Ekberli, İ. ve Durmuş, Ö.T.K. (2018). Bazı toprak özellikleri ile kütle yoğunluğunun tahmini için pedotransfer modeller. Toprak Bilimi ve Bitki Besleme Dergisi, 6(1), 46-51.
  • Pachepsky, Y. A. ve van Genuchten, M. T. (2011). Pedotransfer functions. Encyclopedia of Agrophysics, 556-561.
  • Perie, C. ve Ouimet, R. (2007). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315–25. Rajkai, K., Kabos, S. ve Van Genuchten, M. Th.(2004). Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil & Tillage Research, 79, 145–152.
  • Rawls, W.J. (1983). Estimating soil bulk density fromparticle size analysis and organic matter content. Soil Science, 135, 123–125.
  • Rawls, W.J.ve Brakensiek, D.L. (1989). Estimation of soil water retention and hydraulic properties. In: S. Morel, Editor, unsaturated flow in hydrologic modeling. theory and pratice, Kluwer academic publishers.
  • Rawls,W.J., Nemes, A.ve Pachepsky, Ya. (2004). Effect of soil organic carbon on soil hydraulicproperties. In: Pachepsky, Ya., Rawls,W.J. (Eds.), Development of Pedotransfer Functions in Soil Hydrology. Developments in Soil Science vol. 30. Elsevier, New York, pp. 95–114.
  • Rivera, J. I. ve Bonilla, C. A. (2020). Predicting soil aggregate stability using readily available soil properties and machine learning techniques. Catena, 187, 104408.
  • Saidi, D., Hamel, Z.ve Ababou, A. (2015). Using pedotransfer functions to assess aggregate stability: application to the lower cheliff soils, Algeria, International Journal of Plant & Soil Science, 8, 1-10.
  • Santos, F.L., Jesus, V.A.M. ve Valente, Domingos Sárvio Magalhães, D.S.M. (2012). Modeling of soil penetration resistance using statistical analyses and artificial neural networks. Acta Scientiarum. Agronomy, 34, 2, 219-224.
  • Saxton, K. E., Rawls, W. J., Romberger, J.S. ve Papendick, R. I. (1986). Estimating generalized soil water characteristics from texture. Soil Science Society of America Journa, 50: 1031–1036.
  • Stock, O. ve Downes, N.K. (2008). Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range. Soil and Tillage Research, 99(2), 191-201.
  • Sevastas, S., Gasparatos, D., Botsis, D., Siarkos, I., Diamantaras, K. I. ve Bilas, G. (2018). Predicting bulk density using pedotransfer functions for soils in the Upper Anthemountas basin, Greece. Geoderma Regional, 14, e00169.
  • Shalmani, A. A., Shahrestani, M. S., Asadi, H.ve Bagheri, F. (2010). Comparison of regression pedotransfer functions and artificial neural networks for soil aggregate stability simulation. 19th Wold Congress of Soil Science, Soil Solutions for a Changing World. 1-6 August, Brisbane, Australia.
  • Schwertmann, U. ve Taylor, R.M. (1977). Iron oxides. In: Dixon JB (ed) Minerals in soil environments. Soil Science Society of America, Madison. 948 p
  • Šimanský, V., Kravka, M. ve Jonczak, J.(2017). Stability of soil aggregates ın loamy soils of slovakıa. Journal of Elementology, 22(2), 581-592.
  • Six, J., Elliott, E.T.ve Paustian, K.(2000). Soil structure and soil organic matter: II. A normalized stability ındex and the effect of mineralogy, Soil Science Society of America Journal, 64, 1042 – 1049.
  • Suleiman, A. A. ve Ritchie, J. T. (2001). Estimating saturated hydraulic conductivity from soil porosity. Transactions of the ASAE, 44(2), 235.
  • Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kolli, R.ve Astover, A. (2011). Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma 163, 74–82.
  • Şeker, C. (1999). Penetrasyon direnci ile bazı toprak özellikleri arasındaki ilişkiler. Turkish Journal of Agriculture and Forestry 23, (3), 583-588.
  • To, J.ve Kay, B.D. (2005). Variation in penetrometer resistance with soil properties: the contribution of effective stress and ımplications for pedotransfer functions. Geoderma, 126(3-4), 261-276.
  • Turgut, B., Aksakal, E.L., Öztaş, T.ve Babagil, G.E. (2008). Penetrasyon direncine etki eden toprak özelliklerine ait etki katsayılarının çoklu regresyon analizi ile belirlenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 39(1), 115-121.
  • Turgut, B., Öztaş, T., 2012. Penetrasyon direncini etkileyen bazı toprak özelliklerinin yersel değişiminin belirlenmesi. Tarım Bilimleri Dergisi, 18, 115-125.
  • Tranter, G., Minasny, B., McBratney, A.B., Murphy, B., McKenzie, N.J., Grundy, M. ve Brough, D., 2007. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use Management, 23, 437–443.
  • Umer, M. I.ve Rajab, S.M. (2012). Correlation between aggregate stability and microbiological activity in two russian soil types, Eurasian Journal of Soil Science, 1(1), 45-50.
  • Unger, P.W.ve Jones, O.R. (1998). Long-Term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil & Tillage Research, 45(1), 39-57.
  • Unguraşu, A.N., Anel, F.D.ve Florian Stătescu, F. (2012). Estimatıon of soil hydraulic parameters with the help of rosetta program. Lucrări Ştiinţifice– vol. 55, seria Agronomie.
  • Usta, A., Yilmaz, M.ve Kocamanoglu, Y.O. (2018). Estimation of wet soil aggregate stability by some soil properties in a semi-arid ecosystem, Fresenius EnvironmentaL Bulletin, 27(12 A), 9026-9032.
  • Van Genuchten, M.Th. (1980). A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44:892-898.
  • Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., et al. ve Schaap, M.G. (2017). Pedotransfer functions in Earth system science: challenges and perspectives. Reviews of Geophysics, 55(4), 1199-1256.
  • Vereecken, H., Maes, J., Feyen, J. ve Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science,148: 389–403.
  • Wösten, J. H. M., Lilly, A., Nemes, A. ve Le Bas, C. (1999). Development and use of adatabase of hydraulic properties of European soils. Geoderma. 90: 169–185.
  • Wösten, J.H.M., Pachepsky, Y. ve Rawls, W.J. (2001). Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 123–150.
  • Whalley, W.R., To, J., Kay, B.D. ve Whitmore, A.P. (2007). Prediction of the penetrometer resistance of soils with models with few parameters. Geoderma 137, 370–377.
  • Yakupoğlu, T., Saltalı, K. ve Karagöktaş, M. (2012). Narlı ovası'nda toprak aşınabilirliğinin pedotransfer yaklaşım ile tahminlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 15(2), 59-67.
  • Yakupoğlu, T., Şişman, A. Ö. ve Gündoğan, R. (2015). Toprakların agregat stabilitesi değerlerinin yapay sinir ağları ile tahminlenmesi. Türkiye Tarımsal Araştırmalar Dergisi, 2(2), 83-92.
  • Yakupoğlu, T., Şişman, A.Ö., Karagöktaş, M. ve Demir, Ö.F. (2013). Toprakların doygun koşullardaki hidrolik iletkenlik değerlerinin pedotransfer eşitliklerle tahminlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 8 (1), 84-89.
  • Yang, X.ve You, X. (2013). Estimating parameters of van genuchten model for soil water retention curve by ıntelligent algorithms. Applied Mathematics & Information Sciences, 7, No. 5, 1977-1983.
  • Yeşilsoy, M. Ş. ve Aydın, M. (1993). Toprak Fiziği. Çukurova Üniversitesi. Ziraat Fakültesi Ders Kitabı, 124.
  • Yılmaz, K., Çelik, I., Kapur, S. ve Ryan, J. (2005). Clay minerals, Ca/Mg Ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity and soil erosion in doutheastern Turkey. Turkish journal of Agriculture and Forestry, 29(1), 29-37.
  • Zacharias, S. ve Wessolek, G. (2007). Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Science Society of America Journal, 71: 43–50.
There are 85 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Pelin Alaboz 0000-0001-7345-938X

Ahmet Ali Işıldar 0000-0001-7099-8011

Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Alaboz, P., & Işıldar, A. A. (2019). Pedotransfer Fonksiyonların (PTFs) Bazı Toprak Fiziksel Özellikleri için Değerlendirilmesi. Türk Bilim Ve Mühendislik Dergisi, 1(1), 28-34.