Research Article
BibTex RIS Cite

Loxodromes On Twisted Surfaces in Euclidean 3-Space

Year 2022, , 427 - 433, 30.09.2022
https://doi.org/10.55525/tjst.1137348

Abstract

In the present paper, loxodromes, which cut all meridians and parallels of twisted surfaces (that can be considered as a generalization of rotational surfaces) at a constant angle, have been studied in Euclidean 3-space and also some examples have been constructed to visualize and support our theory.

References

  • J. Alexander; Loxodromes: a rhumb way to go, Math. Mag., 77(5), (2004), 349–356.
  • M. Babaarslan and Y. Yaylı; Differential Equation of the Loxodrome on a Helicoidal Surface, The Journal of Navigation, 68, (2015), 962–970.
  • M. Babaarslan, Loxodromes on Canal Surfaces in Euclidean 3-Space, Ann. Sofia Univ. Fac. Math and Inf., 103, (2016), 97–103.
  • M. Babaarslan and Y. Yaylı; Space-like loxodromes on rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl., 409, (2014), 288–298.
  • M. Babaarslan and M.I. Munteanu; Timelike loxodromes on rotational surfaces in Minkowski 3–space, Annals of the Alexandru Ioan Cuza University-Mathematics, (2015), DOI: 10.2478/aicu-2013-0021.
  • M. Babaarslan and M. Kayacik; Differential Equations of the Space-Like Loxodromes on the Helicoidal Surfaces, Differ Equ Dyn Syst, 28(2), (2020), 495–512.
  • M. Dede, C. Ekici, W. Goemans and Y ¨Unl¨ut¨urk; Twisted surfaces with vanishing curvature in Galilean 3-space, International Journal of Geometric Methods in Modern Physics, 15(1), (2018).
  • W. Goemans and I. Van de Woestyne, Twisted surfaces in Euclidean and Minkowski 3-space, Pure and Applied Differential Geometry, Joeri Van der Veken, Ignace Van de Woestyne, Leopold Verstraelen and Luc Vrancken (Editors), Shaker Verlag (Aachen, Germany), (2013), 143-151.
  • W. Goemans and I. Van de Woestyne; Twisted Surfaces with Null Rotation Axis in Minkowski 3-Space, Results in Mathematics, 70, (2016), 81–93.
  • A. Kazan and H.B. Karada˘g; Twisted Surfaces in the Pseudo-Galilean Space, NTMSCI, 5(4), (2017), 72-79.
  • S. Kos, D. Vranic and D. Zec; Differential Equation of a Loxodrome on a Sphere, The Journal of Navigation, 52, (1999), 418–420.
  • S. Kos, R. Filjar and M. Hess; Differential equation of the loxodrome on a rotational surface, ION ITM Conference, (2009), Anaheim, California, USA.
  • M. Petrovic; Differential Equation of a Loxodrome on the Spheroid, ”Naˇse more”, 54(3-4), (2007), 87-89.
Year 2022, , 427 - 433, 30.09.2022
https://doi.org/10.55525/tjst.1137348

Abstract

References

  • J. Alexander; Loxodromes: a rhumb way to go, Math. Mag., 77(5), (2004), 349–356.
  • M. Babaarslan and Y. Yaylı; Differential Equation of the Loxodrome on a Helicoidal Surface, The Journal of Navigation, 68, (2015), 962–970.
  • M. Babaarslan, Loxodromes on Canal Surfaces in Euclidean 3-Space, Ann. Sofia Univ. Fac. Math and Inf., 103, (2016), 97–103.
  • M. Babaarslan and Y. Yaylı; Space-like loxodromes on rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl., 409, (2014), 288–298.
  • M. Babaarslan and M.I. Munteanu; Timelike loxodromes on rotational surfaces in Minkowski 3–space, Annals of the Alexandru Ioan Cuza University-Mathematics, (2015), DOI: 10.2478/aicu-2013-0021.
  • M. Babaarslan and M. Kayacik; Differential Equations of the Space-Like Loxodromes on the Helicoidal Surfaces, Differ Equ Dyn Syst, 28(2), (2020), 495–512.
  • M. Dede, C. Ekici, W. Goemans and Y ¨Unl¨ut¨urk; Twisted surfaces with vanishing curvature in Galilean 3-space, International Journal of Geometric Methods in Modern Physics, 15(1), (2018).
  • W. Goemans and I. Van de Woestyne, Twisted surfaces in Euclidean and Minkowski 3-space, Pure and Applied Differential Geometry, Joeri Van der Veken, Ignace Van de Woestyne, Leopold Verstraelen and Luc Vrancken (Editors), Shaker Verlag (Aachen, Germany), (2013), 143-151.
  • W. Goemans and I. Van de Woestyne; Twisted Surfaces with Null Rotation Axis in Minkowski 3-Space, Results in Mathematics, 70, (2016), 81–93.
  • A. Kazan and H.B. Karada˘g; Twisted Surfaces in the Pseudo-Galilean Space, NTMSCI, 5(4), (2017), 72-79.
  • S. Kos, D. Vranic and D. Zec; Differential Equation of a Loxodrome on a Sphere, The Journal of Navigation, 52, (1999), 418–420.
  • S. Kos, R. Filjar and M. Hess; Differential equation of the loxodrome on a rotational surface, ION ITM Conference, (2009), Anaheim, California, USA.
  • M. Petrovic; Differential Equation of a Loxodrome on the Spheroid, ”Naˇse more”, 54(3-4), (2007), 87-89.
There are 13 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Mustafa Altın 0000-0001-5544-5910

Publication Date September 30, 2022
Submission Date June 28, 2022
Published in Issue Year 2022

Cite

APA Altın, M. (2022). Loxodromes On Twisted Surfaces in Euclidean 3-Space. Turkish Journal of Science and Technology, 17(2), 427-433. https://doi.org/10.55525/tjst.1137348
AMA Altın M. Loxodromes On Twisted Surfaces in Euclidean 3-Space. TJST. September 2022;17(2):427-433. doi:10.55525/tjst.1137348
Chicago Altın, Mustafa. “Loxodromes On Twisted Surfaces in Euclidean 3-Space”. Turkish Journal of Science and Technology 17, no. 2 (September 2022): 427-33. https://doi.org/10.55525/tjst.1137348.
EndNote Altın M (September 1, 2022) Loxodromes On Twisted Surfaces in Euclidean 3-Space. Turkish Journal of Science and Technology 17 2 427–433.
IEEE M. Altın, “Loxodromes On Twisted Surfaces in Euclidean 3-Space”, TJST, vol. 17, no. 2, pp. 427–433, 2022, doi: 10.55525/tjst.1137348.
ISNAD Altın, Mustafa. “Loxodromes On Twisted Surfaces in Euclidean 3-Space”. Turkish Journal of Science and Technology 17/2 (September 2022), 427-433. https://doi.org/10.55525/tjst.1137348.
JAMA Altın M. Loxodromes On Twisted Surfaces in Euclidean 3-Space. TJST. 2022;17:427–433.
MLA Altın, Mustafa. “Loxodromes On Twisted Surfaces in Euclidean 3-Space”. Turkish Journal of Science and Technology, vol. 17, no. 2, 2022, pp. 427-33, doi:10.55525/tjst.1137348.
Vancouver Altın M. Loxodromes On Twisted Surfaces in Euclidean 3-Space. TJST. 2022;17(2):427-33.